- Selenium工作原理详解
天才测试猿
selenium测试工具自动化测试软件测试测试用例python职场和发展
Selenium是一个用于Web应用程序自动化测试工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaFirefox,Safari,GoogleChrome,Opera等。主要功能包括:测试与浏览器的兼容性——测试你的应用程序看是否能够很好得工作在不同浏览器和操作系统之上。测试系统功能——创建回归测试检验软件功能和用
- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- 设计模式之装饰器模式
周努力.
设计模式设计模式装饰器模式
装饰器模式(Decorator)依然是我们设计模式中的结构型模式,其中的构造思想仍然是对多个类进行组合使用,以达成系统调用实现指定功能的设计模式。装饰器模式不论在我们日常开发过程中还是在我们提升技术阅读源码过程中都是比较常见的,但是整体学习这个模式的思路难度不大,接下来我将详细讲解此设计模式。目录1.概念2.代码实现3.应用场景4.装饰器模式与代理模式的区别1.概念我们前期所讲到的适配器模式,是连
- .gitlab-ci.yml 配置文件详解
程序媛夏天
Gitgitlabci/cd.gitlab-ci.yml
个人主页:不爱吃糖的程序媛♂️作者简介:前端领域新星创作者、CSDN内容合伙人,专注于前端各领域技术,成长的路上共同学习共同进步,一起加油呀!✨系列专栏:前端面试宝典、JavaScript进阶、vue实战资料领取:前端进阶资料以及文中源码可以在公众号“不爱吃糖的程序媛”领取git工具文档说明:https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.ht
- OpenManus 架构的详细技术实现
大势下的牛马
搭建本地gpt架构OpenManusManusAgent
一、OpenManus架构的详细技术实现1.核心分层架构的深度解析底层:LLM层模型选择与适配:OpenManus允许用户替换底层LLM(如mPLUG-Owl3、Qwen、Llama等),通过统一接口调用模型API,实现跨模型兼容性Prompt工程设计:用户输入的自然语言指令通过精心设计的Prompt转换为结构化指令。例如,PlanningTool使用预定义的Prompt模板(如请将任务分解为可执
- 7-6 字符串排序--string类的使用
syh132167
java开发语言
先输入你要输入的字符串的个数。然后换行输入该组字符串。每个字符串以回车结束,每个字符串不多于一百个字符。如果在输入过程中输入的一个字符串为“stop”,也结束输入。然后将这输入的该组字符串按每个字符串的长度,由小到大排序,按排序结果输出字符串。如果存在多个字符串长度相同,则按照原始输入顺序输出。输入格式:字符串的个数,以及该组字符串。每个字符串以‘\n’结束。如果输入字符串为“stop”,也结束输
- 初始OpenCV
指尖下的技术
OpenCVopencv人工智能计算机视觉
OpenCV是一个功能强大、应用广泛的计算机视觉库,它为开发人员提供了丰富的工具和算法,可以帮助他们快速构建各种视觉应用。随着计算机视觉技术的不断发展,OpenCV也将会继续发挥重要的作用。OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及机器学习领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。首先介绍一下OpenCV
- WRF移动嵌套结合伏羲模型与CFD(PALM)高精度多尺度降尺度分析研究
Hardess-god
WRF算法人工智能
随着大气科学与数值模拟技术的发展,高精度多尺度气象模拟日益成为科研与应用的热点问题。本文将详细介绍如何使用WRF移动嵌套技术结合伏羲(Fuxi)模型,并通过CFD模型PALM实现精细化降尺度,以满足城市或区域局地精细化气象预报的需求。1.技术路线概述WRF移动嵌套(MovingNesting):动态调整高分辨率嵌套网格位置,追踪天气系统(如台风、强对流系统)以提高局地预报精度。伏羲(Fuxi)模型
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- CSP-J备考冲刺必刷题(C++) | AcWing 1253 家谱
热爱编程的通信人
c++开发语言
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺必刷题(C++)|汇总【题目来源】Acwing:1253.家谱-AcWing题库
- 重塑家用机器人大脑!云鲸旗舰机型逍遥002搭载旭日5正式开售
量子位
2025年3月20日,全球家庭清洁机器人明星品牌云鲸智能携最新一代旗舰机型——云鲸逍遥002,亮相中国家电及消费电子博览会(AWE)。该产品以”AI智能深度清洁“为核心,基于地瓜机器人全新一代旭日5智能计算芯片,推出首创的双目AI视觉感知自适应系统,以10TOPs的端侧算力与180万点/秒的3D稠密深度点云生成能力,为家庭场景带来毫米级障碍测距精度与语义级环境理解,是家庭清洁机器人智能化演进的又一
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- “三分钟”看懂仓库质检 - WMS质检管理要点精华版(2-2)
wms系统
在仓储管理中,上期我们说了收货前质检,这期我们来说说收货后质检。同样它也是确保货物质量的关键环节。一、库存/库位/LPN质检流程(一)流程概述生成质检单:先对入库单收货,收货完成后生成质检单,质检单发给质检系统。同步的信息包括库位+批次,质检人员根据同步的信息找到库存做质检。同步质检结果:质检结束后,质检系统同步质检结果到质检单。库存转移:WMS根据质检单的批次+库位+LPN查找库存,找到库存后做
- AI巨浪中的安全之舵:天空卫士助力人工智能落地远航
天空卫士
人工智能安全数据安全网络安全大数据
"AI时代的安全战场,不在云端在本地;数据治理的胜负手,不在防御在认知。"近期,众多企业纷纷接入DeepSeek大模型,迅速推动了大型模型应用的广泛铺开。无论是在制造业、金融业,还是在医疗、教育等领域,DeepSeek大模型的应用都如火如荼,遍地开花,展现出了其广泛的应用前景和巨大的商业价值。顺势而来的是DeepSeek一体机以"低成本、高算力、私有化部署"的优势席卷企业市场。因为DeepSeek
- NVMe(Non-Volatile Memory Express)详解
美好的事情总会发生
高速接口嵌入式硬件硬件工程智能硬件
一、NVMe的定义与核心特性NVMe(非易失性内存主机控制器接口规范)是一种基于PCIe总线的高性能存储协议,专为固态硬盘(SSD)设计,旨在替代传统的AHCI协议(如SATA)。其核心特性包括:低延迟:命令队列深度提升至64K(AHCI仅32),减少I/O等待时间(典型延迟<100μs)。高吞吐量:支持PCIe4.0x4带宽(8GB/s),PCIe5.0x4可达16GB/s。多队列并行:支持多核
- DeepSeek重塑软件行业:研发工程师的机遇与挑战
LiuSid7
人工智能llama语言模型ai
人工智能技术的浪潮正以前所未有的速度重塑软件行业,而DeepSeek作为其中的代表性技术,已成为研发工程师日常工作中不可忽视的变革力量。从代码生成到架构优化,从效率提升到职业生态重构,DeepSeek正在重新定义工程师的工作范式。以下从技术革新、职业发展、行业趋势三个维度,分析其对研发工程师的核心影响。一、技术革新:从“重复劳动”到“创造力释放”代码生产的效率革命DeepSeek通过自然语言指令生
- 清华出品DeepSeek教程1-7版:前沿技术学习的黄金资源库
你好ITgg
pdf
《清华出品DeepSeek教程1-7版:前沿技术学习的黄金资源库》「DeepSeek清华资料」共7册链接:https://pan.quark.cn/s/b8d8760976ca「DeepSeek使用手册大全」链接:https://pan.quark.cn/s/52c234062a2e「DeepSeek资料合集」链接:https://pan.quark.cn/s/71c8604f0e8a「DeepS
- 机器学习结合伏羲模型高精度多尺度气象分析与降尺度实现
Hardess-god
WRF算法人工智能
随着人工智能的发展,机器学习技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合机器学习(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。1.研究目标与技术路线目标:结合机器学习模型与伏羲气象模式,实现区域和局地高精度降尺度。技术路线:伏羲模型提供大尺度气象数据和预报使用机器学习模型(如CNN、LSTM、XGBoost)进行降尺度2.数据准备与处理2.1气象数据获取
- 想使用dify实现docx文档的自动生成?试了一圈,感觉还是根据python-docx更靠谱
几道之旅
人工智能智能体及数字员工人工智能
前言:文档自动生成的需求痛点在软件开发过程中,需求文档、设计文档等材料的编写是每个开发者都绕不开的工作。最近笔者接到一个需要批量生成标准化需求文档的任务,尝试了目前热门的低代码工具Dify后,发现对于稍微复杂格式的文档生成需求(例如文本居中这么简单的需求),最终还是回归到基于python-docx库的解决方案。本文将分享两种技术路线的对比实践。一、Dify的踩坑经历我尝试了markdown转doc
- 关于以下程序段的输出正确的是:String s1=“abc“+“def“;String s2=new String(s1); if(s1.equals(s2))System.out.println
张同学吧
练习java
关于以下程序段的输出正确的是:Strings1="abc"+"def";//1Strings2=newString(s1);//2if(s1.equals(s2))//3System.out.println(".equalssucceeded");//4if(s1==s2)//5System.out.println("==succeeded");//6A.输出".equalssucceeded",
- 前缀和处理数组区间之和问题
张同学吧
笔记c++
1.什么是区间和问题“区间和问题”通常指的是涉及计算或处理数组或数列某个子区间(即一段连续元素)的总和的类型问题。这类问题可能有多种变体和不同的复杂度,但基本思想都是在给定的区间内快速计算总和或处理与区间和相关的操作。2.例题1题目描述给定一个整数数组Array,请计算该数组在每个指定区间内元素的总和。输入描述第一行输入为整数数组Array的长度n,接下来n行,每行一个整数,表示数组的元素。随后的
- K8S之POD调度
〰振振 ༽
K8Skubernetesdocker容器
K8S-Pod调度1、Deployment/RC:全自动调度简述Deployment或RC的主要功能就是自动部署一个容器应用的多份副本,及持续监控副本的数量并维持该值。创建Deploymentkubectlcreate-fnginx-deployment.yaml#nginx-deployment.yamlapiVersion:apps/v1kind:Deploymentmetadata:name
- MSE分类时梯度消失的问题详解和交叉熵损失的梯度推导
阿正的梦工坊
MachineLearningDeepLearning分类人工智能深度学习机器学习
下面是MSE不适合分类任务的解释,包含梯度推导。以及交叉熵的梯度推导。前文请移步笔者的另一篇博客:大模型训练为什么选择交叉熵损失(Cross-EntropyLoss):均方误差(MSE)和交叉熵损失的深入对比MSE分类时梯度消失的问题详解我们深入探讨MSE(均方误差)的梯度特性,结合公式推导和分析,解释为什么在预测值接近0或1时梯度趋于0,以及这背后的含义。我会尽量保持清晰且严谨,适合高理论水平的
- OpenHarmony 开源硬件学习全指南:从入门到实战
琢磨先生David
开源harmonyos
OpenHarmony开源硬件学习全指南:从入门到实战随着万物互联时代的到来,OpenHarmony作为面向全场景的开源分布式操作系统,正逐步成为智能硬件开发的重要技术底座。本文将系统性地解析OpenHarmony开源硬件的学习路径、开发工具链及行业实践方案,为开发者提供从环境搭建到项目落地的完整指引。一、构建开发环境:混合平台的智慧选择OpenHarmony采用Windows与Linux混合开发
- 使用Python和LangChain构建检索增强生成(RAG)应用的详细指南
m0_57781768
pythonlangchain搜索引擎
使用Python和LangChain构建检索增强生成(RAG)应用的详细指南引言在人工智能和自然语言处理领域,利用大语言模型(LLM)构建复杂的问答(Q&A)系统是一个重要应用。检索增强生成(RetrievalAugmentedGeneration,RAG)是一种技术,通过将模型知识与额外数据结合来增强LLM的能力,使其能够回答关于特定源信息的问题。这些应用不仅限于公开数据,还可以处理私有数据和模
- 【从零开始学习计算机科学】计算机体系结构(一)计算机体系结构、指令、指令集(ISA)与量化评估
贫苦游商
学习服务器网络计算机体系结构ISA指令集量化评估
【从零开始学习计算机科学】计算机体系结构(一)计算机体系结构、指令、指令集(ISA)与量化评估概论计算机体系结构简介计算机的分类并行体系结构指令集体系结构(ISA)分类存储器寻址寻址模式操作数大小指令ISA的编码程序的优化计算机体系结构量化评估存储器体系结构概论计算机体系结构与计算机组成原理之间的联系非常紧密,其研究范畴基本一致,计算机体系结构与计算机组成原理两者是相辅相成的。但是,计算机体系结构
- 华为OD机试 - 输出单向链表中倒数第k个结点 - 双指针(Python/JS/C/C++ 2024 B卷 100分)
哪 吒
华为od链表python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述输入一个单向链表,输出该链表中倒数第k个结点,链表的倒数第1个结
- 华为OD机试 - 图片整理(Python/JS/C/C++ 2024 B卷 100分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述Lily上课时使用字母数字图片教小朋友们学习英语单词,每次都需要
- 华为OD机试 - 宜居星球改造计划 - 图的多源BFS(Python/JS/C/C++ 2023 B卷 100分)
哪 吒
华为od宽度优先python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述2XXX年,人类通过对火星的大气进行宜居改造分析,使得火星已在理
- B2143 进制转换
1101.01
算法c++
题目描述用递归算法将一个十进制整数X(1≤X≤109)转换成任意进制数M(2≤M≤16,M为整数)。输入格式一行两个数,第一个十进制整数X,第二个为进制M。输出格式输出结果。输入输出样例输入#1复制3116输出#1复制1F说明/提示样例解释。将十进制31转化为十六进制数。#includeusingnamespacestd;chars[16]={'0','1','2','3','4','5','6'
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号