错误日志是 MySQL 中最重要的日志之一,它记录了当 mysqld 启动和停止时,以及服务器在运行过程中发生任何严重错误时的相关信息。当数据库出现任何故障导致无法正常使用时,建议首先查看此日志。
该日志是默认开启的,默认存放目录 /var/log/,默认的日志文件名为 mysqld.log 。查看日志位置:
show variables like '%log_error%';
二进制日志(BINLOG)记录了所有的 DDL(数据定义语言)语句和 DML(数据操纵语言)语句,但不包括数据查询(SELECT、SHOW)语句。
作用:①. 灾难时的数据恢复;②. MySQL的主从复制。在MySQL8版本中,默认二进制日志是开启着的,涉及到的参数如下:
show variables like '%log_bin%';
参数说明:
log_bin_basename:当前数据库服务器的binlog日志的基础名称(前缀),具体的binlog文件名需要再该basename的基础上加上编号(编号从000001开始)。
log_bin_index:binlog的索引文件,里面记录了当前服务器关联的binlog文件有哪些。
MySQL服务器中提供了多种格式来记录二进制日志,具体格式及特点如下:
日志格式 | 含义 |
---|---|
STATEMENT | 基于SQL语句的日志记录,记录的是SQL语句,对数据进行修改的SQL都会记录在日志文件中。 |
ROW | 基于行的日志记录,记录的是每一行的数据变更。(默认) |
MIXED | 混合了STATEMENT和ROW两种格式,默认采用STATEMENT,在某些特殊情况下会自动切换为ROW进行记录。 |
show variables like '%binlog_format%';
如果我们需要配置二进制日志的格式,只需要在 /etc/my.cnf 中配置 binlog_format 参数即可。
由于日志是以二进制方式存储的,不能直接读取,需要通过二进制日志查询工具 mysqlbinlog 来查看,具体语法:
mysqlbinlog [ 参数选项 ] logfilename
参数选项:
-d 指定数据库名称,只列出指定的数据库相关操作。
-o 忽略掉日志中的前n行命令。
-v 将行事件(数据变更)重构为SQL语句
-vv 将行事件(数据变更)重构为SQL语句,并输出注释信息
对于比较繁忙的业务系统,每天生成的binlog数据巨大,如果长时间不清除,将会占用大量磁盘空间。可以通过以下几种方式清理日志:
指令 | 含义 |
---|---|
reset master | 删除全部 binlog 日志,删除之后,日志编号,将从 binlog.000001重新开始 |
purge master logs to ‘binlog.*’ | 删除 * 编号之前的所有日志 |
purge master logs before ‘yyyy-mm-dd hh24:mi:ss’ | 删除日志为 “yyyy-mm-dd hh24:mi:ss” 之前产生的所有日志 |
也可以在mysql的配置文件中配置二进制日志的过期时间,设置了之后,二进制日志过期会自动删除。
show variables like '%binlog_expire_logs_seconds%';
查询日志中记录了客户端的所有操作语句,而二进制日志不包含查询数据的SQL语句。默认情况下,查询日志是未开启的。
如果需要开启查询日志,可以修改MySQL的配置文件 /etc/my.cnf 文件,添加如下内容:
#该选项用来开启查询日志 , 可选值 : 0 或者 1 ; 0 代表关闭, 1 代表开启
general_log=1
#设置日志的文件名 , 如果没有指定, 默认的文件名为 host_name.log
general_log_file=mysql_query.log
开启了查询日志之后,在MySQL的数据存放目录,也就是 /var/lib/mysql/ 目录下就会出现mysql_query.log 文件。之后所有的客户端的增删改查操作都会记录在该日志文件之中,长时间运行后,该日志文件将会非常大。
慢查询日志记录了所有执行时间超过参数 long_query_time 设置值并且扫描记录数不小于min_examined_row_limit 的所有的SQL语句的日志,默认未开启。long_query_time 默认为10 秒,最小为 0, 精度可以到微秒。
如果需要开启慢查询日志,需要在MySQL的配置文件 /etc/my.cnf 中配置如下参数:
#慢查询日志
slow_query_log=1
#执行时间参数
long_query_time=2
默认情况下,不会记录管理语句,也不会记录不使用索引进行查找的查询。可以使用log_slow_admin_statements和 更改此行为 log_queries_not_using_indexes,如下所述。
#记录执行较慢的管理语句
log_slow_admin_statements =1
#记录执行较慢的未使用索引的语句
log_queries_not_using_indexes = 1
上述所有的参数配置完成之后,都需要重新启动MySQL服务器才可以生效。
主从复制是指将主数据库的 DDL 和 DML 操作通过二进制日志传到从库服务器中,然后在从库上对这些日志重新执行(也叫重做),从而使得从库和主库的数据保持同步。
MySQL支持一台主库同时向多台从库进行复制, 从库同时也可以作为其他从服务器的主库,实现链状复制。
MySQL 复制的优点主要包含以下三个方面:
主库出现问题,可以快速切换到从库提供服务。
实现读写分离,降低主库的访问压力。
可以在从库中执行备份,以避免备份期间影响主库服务。
从上图来看,复制分成三步:
准备好两台服务器之后,在上述的两台服务器中分别安装好MySQL,并完成基础的初始化准备(安装、密码配置等操作)工作。 其中:
192.168.200.200 作为主服务器master
192.168.200.201 作为从服务器slave
#mysql 服务ID,保证整个集群环境中唯一,取值范围:1 – 232-1,默认为1
server-id=1
#是否只读,1 代表只读, 0 代表读写
read-only=0
#忽略的数据, 指不需要同步的数据库
#binlog-ignore-db=mysql
#指定同步的数据库
#binlog-do-db=db01
systemctl restart mysqld
#创建angyan用户,并设置密码,该用户可在任意主机连接该MySQL服务
CREATE USER 'angyan'@'%' IDENTIFIED WITH mysql_native_password BY 'Root@123456';
#为 'angyan'@'%' 用户分配主从复制权限
GRANT REPLICATION SLAVE ON *.* TO 'angyan'@'%';
show master status ;
字段含义说明:
file : 从哪个日志文件开始推送日志文件
position : 从哪个位置开始推送日志
binlog_ignore_db : 指定不需要同步的数据库
#mysql 服务ID,保证整个集群环境中唯一,取值范围:1 – 2^32-1,和主库不一样即可
server-id=2
#是否只读,1 代表只读, 0 代表读写
read-only=1
systemctl restart mysqld
CHANGE REPLICATION SOURCE TO SOURCE_HOST='192.168.200.200', SOURCE_USER='angyan',SOURCE_PASSWORD='Root@123456',SOURCE_LOG_FILE='binlog.000004',SOURCE_LOG_POS=663;
上述是8.0.23中的语法。如果mysql是 8.0.23 之前的版本,执行如下SQL:
CHANGE MASTER TO MASTER_HOST='192.168.200.200', MASTER_USER='angyan',MASTER_PASSWORD='Root@123456',MASTER_LOG_FILE='binlog.000004',MASTER_LOG_POS=663;
参数名 | 含义 | 8.0.23之前 |
---|---|---|
SOURCE_HOST | 主库IP地址 | MASTER_HOST |
SOURCE_USER | 连接主库的用户名 | MASTER_USER |
SOURCE_PASSWORD | 连接主库的密码 | MASTER_PASSWORD |
SOURCE_LOG_FILE | binlog日志文件名 | MASTER_LOG_FILE |
SOURCE_LOG_POS | binlog日志文件位置 | MASTER_LOG_POS |
start replica ; #8.0.22之后
start slave ; #8.0.22之前
show replica status ; #8.0.22之后
show slave status ; #8.0.22之前
create database db01;
use db01;
create table tb_user(
id int(11) primary key not null auto_increment,
name varchar(50) not null,
sex varchar(1)
)engine=innodb default charset=utf8mb4;
insert into tb_user(id,name,sex) values(null,'Tom', '1'),(null,'Trigger','0'),(null,'Dawn','1');
随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行数据存储,存在以下性能瓶颈:
IO瓶颈:热点数据太多,数据库缓存不足,产生大量磁盘IO,效率较低。 请求数据太多,带宽不够,网络IO瓶颈。
CPU瓶颈:排序、分组、连接查询、聚合统计等SQL会耗费大量的CPU资源,请求数太多,CPU出现瓶颈。
分库分表的中心思想都是将数据分散存储,使得单一数据库/表的数据量变小来缓解单一数据库的性能问题,从而达到提升数据库性能的目的。
分库分表的形式,主要是两种:垂直拆分
和水平拆分
。而拆分的粒度,一般又分为分库和分表,所以组成的拆分策略最终如下:
垂直分库:以表为依据,根据业务将不同表拆分到不同库中。
特点:
每个库的表结构都不一样。
每个库的数据也不一样。
所有库的并集是全量数据。
垂直分表:以字段为依据,根据字段属性将不同字段拆分到不同表中。
特点:
每个表的结构都不一样。
每个表的数据也不一样,一般通过一列(主键/外键)关联。
所有表的并集是全量数据。
水平分库:以字段为依据,按照一定策略,将一个库的数据拆分到多个库中。
特点:
每个库的表结构都一样。
每个库的数据都不一样。
所有库的并集是全量数据。
水平分表:以字段为依据,按照一定策略,将一个表的数据拆分到多个表中。
特点:
每个表的表结构都一样。
每个表的数据都不一样。
所有表的并集是全量数据。
在业务系统中,为了缓解磁盘IO及CPU的性能瓶颈,到底是垂直拆分,还是水平拆分;具体是分库,还是分表,都需要根据具体的业务需求具体分析。
shardingJDBC:基于AOP原理,在应用程序中对本地执行的SQL进行拦截,解析、改写、路由处理。需要自行编码配置实现,只支持java语言,性能较高。
Mycat是开源的、活跃的、基于Java语言编写的MySQL数据库中间件。可以像使用mysql一样来使用mycat,对于开发人员来说根本感觉不到mycat的存在。
开发人员只需要连接MyCat即可,而具体底层用到几台数据库,每一台数据库服务器里面存储了什么数据,都无需关心。 具体的分库分表的策略,只需要在MyCat中配置即可。
优势:
性能可靠稳定
强大的技术团队
体系完善
社区活跃
下载地址:http://dl.mycat.org.cn/
Mycat是采用java语言开发的开源的数据库中间件,支持Windows和Linux运行环境,下面介绍MyCat的Linux中的环境搭建。我们需要在准备好的服务器中安装如下软件。
服务器 | 安装软件 | 说明 |
---|---|---|
192.168.200.210 | JDK、Mycat | MyCat中间件服务器 |
192.168.200.210 | MySQL | 分片服务器 |
192.168.200.213 | MySQL | 分片服务器 |
192.168.200.214 | MySQL | 分片服务器 |
云服务器或者虚拟机都可以;
Linux的版本为 CentOS7;
https://downloads.mysql.com/archives/community/
mkdir mysql
tar -xvf mysql-8.0.26-1.el7.x86_64.rpm-bundle.tar -C mysql
cd mysql
rpm -ivh mysql-community-common-8.0.26-1.el7.x86_64.rpm
rpm -ivh mysql-community-client-plugins-8.0.26-1.el7.x86_64.rpm
rpm -ivh mysql-community-libs-8.0.26-1.el7.x86_64.rpm
rpm -ivh mysql-community-libs-compat-8.0.26-1.el7.x86_64.rpm
yum install openssl-devel
rpm -ivh mysql-community-devel-8.0.26-1.el7.x86_64.rpm
rpm -ivh mysql-community-client-8.0.26-1.el7.x86_64.rpm
rpm -ivh mysql-community-server-8.0.26-1.el7.x86_64.rpm
systemctl start mysqld
systemctl restart mysqld
systemctl stop mysqld
grep 'temporary password' /var/log/mysqld.log
命令行执行指令 :
mysql -u root -p
然后输入上述查询到的自动生成的密码, 完成登录 .
登录到MySQL之后,需要将自动生成的不便记忆的密码修改了,修改成自己熟悉的便于记忆的密码。
ALTER USER 'root'@'localhost' IDENTIFIED BY '1234';
执行上述的SQL会报错,原因是因为设置的密码太简单,密码复杂度不够。我们可以设置密码的复杂度为简单类型,密码长度为4。
set global validate_password.policy = 0;
set global validate_password.length = 4;
降低密码的校验规则之后,再次执行上述修改密码的指令。
默认的root用户只能当前节点localhost访问,是无法远程访问的,我们还需要创建一个root账户,用户远程访问
create user 'root'@'%' IDENTIFIED WITH mysql_native_password BY '1234';
grant all on *.* to 'root'@'%';
mysql -u root -p
然后输入密码
执行如下指令,将上传上来的压缩包进行解压,并通过-C参数指定解压文件存放目录为 /usr/local。
tar -zxvf jdk-8u171-linux-x64.tar.gz -C /usr/local
使用vim命令修改/etc/profile文件,在文件末尾加入如下配置
JAVA_HOME=/usr/local/jdk1.8.0_171
PATH=$JAVA_HOME/bin:$PATH
具体操作指令如下:
1). 编辑/etc/profile文件,进入命令模式
vim /etc/profile
2). 在命令模式中,输入指令 G , 切换到文件最后
G
3). 在命令模式中输入 i/a/o 进入插入模式,然后切换到文件最后一行
i
4). 将上述的配置拷贝到文件中
export JAVA_HOME=/usr/local/jdk1.8.0_171
export PATH=$JAVA_HOME/bin:$PATH
5). 从插入模式,切换到指令模式
ESC
6). 按:进入底行模式,然后输入wq,回车保存
:wq
为了使更改的配置立即生效,需要重新加载profile文件,执行命令:
source /etc/profile
java -version
Mycat-server-1.6.7.3-release-20210913163959-linux.tar.gz
tar -zxvf Mycat-server-1.6.7.3-release-20210913163959-linux.tar.gz -C /usr/local/
bin : 存放可执行文件,用于启动停止mycat
conf:存放mycat的配置文件
lib:存放mycat的项目依赖包(jar)
logs:存放mycat的日志文件
在MyCat的整体结构中,分为两个部分:上面的逻辑结构、下面的物理结构。
在MyCat的逻辑结构主要负责逻辑库、逻辑表、分片规则、分片节点等逻辑结构的处理,而具体的数据存储还是在物理结构,也就是数据库服务器中存储的。
由于 tb_order 表中数据量很大,磁盘IO及容量都到达了瓶颈,现在需要对 tb_order 表进行数据分片,分为三个数据节点,每一个节点主机位于不同的服务器上, 具体的结构,参考下图:
准备3台服务器:
并且在上述3台数据库中创建数据库 db01 。
在schema.xml中配置逻辑库、逻辑表、数据节点、节点主机等相关信息。具体的配置如下:
DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<schema name="DB01" checkSQLschema="true" sqlMaxLimit="100">
<table name="TB_ORDER" dataNode="dn1,dn2,dn3" rule="auto-sharding-long"/>
schema>
<dataNode name="dn1" dataHost="dhost1" database="db01" />
<dataNode name="dn2" dataHost="dhost2" database="db01" />
<dataNode name="dn3" dataHost="dhost3" database="db01" />
<dataHost name="dhost1" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.200.210:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
dataHost>
<dataHost name="dhost2" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.200.213:3306useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
dataHost>
<dataHost name="dhost3" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.200.214:3306useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
dataHost>
mycat:schema>
需要在server.xml中配置用户名、密码,以及用户的访问权限信息,具体的配置如下:
<user name="root" defaultAccount="true">
<property name="password">123456property>
<property name="schemas">DB01property>
user>
<user name="user">
<property name="password">123456property>
<property name="schemas">DB01property>
<property name="readOnly">trueproperty>
user>
上述的配置表示,定义了两个用户 root 和 user ,这两个用户都可以访问 DB01 这个逻辑库,访问密码都是123456,但是root用户访问DB01逻辑库,既可以读,又可以写,但是 user用户访问DB01逻辑库是只读的。
配置完毕后,先启动涉及到的3台分片服务器,然后启动MyCat服务器。切换到Mycat的安装目录,执行如下指令,启动Mycat:
#启动
bin/mycat start
#停止
bin/mycat stop
Mycat启动之后,占用端口号 8066。
启动完毕之后,可以查看logs目录下的启动日志,查看Mycat是否启动完成。
通过如下指令,就可以连接并登陆MyCat。
mysql -h 192.168.200.210 -P 8066 -uroot -p123456
我们看到我们是通过MySQL的指令来连接的MyCat,因为MyCat在底层实际上是模拟了MySQL的协议。
然后就可以在MyCat中来创建表,并往表结构中插入数据,查看数据在MySQL中的分布情况。
CREATE TABLE TB_ORDER (
id BIGINT(20) NOT NULL,
title VARCHAR(100) NOT NULL ,
PRIMARY KEY (id)
) ENGINE=INNODB DEFAULT CHARSET=utf8 ;
INSERT INTO TB_ORDER(id,title) VALUES(1,'goods1');
INSERT INTO TB_ORDER(id,title) VALUES(2,'goods2');
INSERT INTO TB_ORDER(id,title) VALUES(3,'goods3');
INSERT INTO TB_ORDER(id,title) VALUES(1,'goods1');
INSERT INTO TB_ORDER(id,title) VALUES(2,'goods2');
INSERT INTO TB_ORDER(id,title) VALUES(3,'goods3');
INSERT INTO TB_ORDER(id,title) VALUES(5000000,'goods5000000');
INSERT INTO TB_ORDER(id,title) VALUES(10000000,'goods10000000');
INSERT INTO TB_ORDER(id,title) VALUES(10000001,'goods10000001');
INSERT INTO TB_ORDER(id,title) VALUES(15000000,'goods15000000');
INSERT INTO TB_ORDER(id,title) VALUES(15000001,'goods15000001');
经过测试,我们发现,在往 TB_ORDER 表中插入数据时:
如果id的值在1-500w之间,数据将会存储在第一个分片数据库中。
如果id的值在500w-1000w之间,数据将会存储在第二个分片数据库中。
如果id的值在1000w-1500w之间,数据将会存储在第三个分片数据库中。
如果id的值超出1500w,在插入数据时,将会报错。
为什么会出现这种现象,数据到底落在哪一个分片服务器到底是如何决定的呢? 这是由逻辑表配置时的一个参数 rule 决定的,而这个参数配置的就是分片规则
schema.xml 作为MyCat中最重要的配置文件之一 , 涵盖了MyCat的逻辑库 、 逻辑表 、 分片规则、分片节点及数据源的配置。
主要包含以下三组标签:
schema标签
datanode标签
datahost标签
<schema name="DB01" checkSQLschema="true" sqlMaxLimit="100">
<table name="TB_ORDER" dataNode="dn1,dn2,dn3" rule="auto-sharding-long"/>
schema>
schema 标签用于定义 MyCat实例中的逻辑库 , 一个MyCat实例中, 可以有多个逻辑库 , 可以通过 schema 标签来划分不同的逻辑库。MyCat中的逻辑库的概念,等同于MySQL中的database概念, 需要操作某个逻辑库下的表时, 也需要切换逻辑库(use xxx)。
核心属性:
name:指定自定义的逻辑库库名
checkSQLschema:在SQL语句操作时指定了数据库名称,执行时是否自动去除;true:自动去除,false:不自动去除
sqlMaxLimit:如果未指定limit进行查询,列表查询模式查询多少条记录
table 标签定义了MyCat中逻辑库schema下的逻辑表 , 所有需要拆分的表都需要在table标签中定义 。
核心属性:
name:定义逻辑表表名,在该逻辑库下唯一
dataNode:定义逻辑表所属的dataNode,该属性需要与dataNode标签中name对应;多个dataNode逗号分隔
rule:分片规则的名字,分片规则名字是在rule.xml中定义的
primaryKey:逻辑表对应真实表的主键
type:逻辑表的类型,目前逻辑表只有全局表和普通表,如果未配置,就是普通表;全局表,配置为 global
<dataNode name="dn1" dataHost="dhost1" database="db01" />
<dataNode name="dn2" dataHost="dhost2" database="db01" />
<dataNode name="dn3" dataHost="dhost3" database="db01" />
核心属性:
name:定义数据节点名称
dataHost:数据库实例主机名称,引用自 dataHost 标签中name属性
database:定义分片所属数据库
<dataHost name="dhost1" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.200.210:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
dataHost>
该标签在MyCat逻辑库中作为底层标签存在, 直接定义了具体的数据库实例、读写分离、心跳语句。
核心属性:
name:唯一标识,供上层标签使用
maxCon/minCon:最大连接数/最小连接数
balance:负载均衡策略,取值 0,1,2,3
writeType:写操作分发方式(0:写操作转发到第一个writeHost,第一个挂了,切换到第二个;1:写操作随机分发到配置的writeHost)
dbDriver:数据库驱动,支持 native、jdbc
rule.xml中定义所有拆分表的规则, 在使用过程中可以灵活的使用分片算法, 或者对同一个分片算法使用不同的参数, 它让分片过程可配置化。主要包含两类标签:tableRule、Function。
server.xml配置文件包含了MyCat的系统配置信息,主要有两个重要的标签:system、user。
<system>
<property name="nonePasswordlogin">0property>
<property name="useHandshakeV10">1property>
<property name="useSqlstat">1property>
system>
主要配置MyCat中的系统配置信息,对应的系统配置项及其含义,如下:
属性 | 取值 | 含义 |
---|---|---|
charset | utf8 | 设置Mycat的字符集, 字符集需要与MySQL的字符集保持一致 |
nonePasswordLogin | 0,1 | 0为需要密码登陆、1为不需要密码登陆 ,默认为0,设置为1则需要指定默认账户 |
useHandshakeV10 | 0,1 | 使用该选项主要的目的是为了能够兼容高版本的jdbc驱动, 是否采用HandshakeV10Packet来与client进行通信, 1:是, 0:否 |
useSqlStat | 0,1 | 开启SQL实时统计, 1 为开启 , 0 为关闭 ;开启之后, MyCat会自动统计SQL语句的执行情况 ; mysql -h 127.0.0.1 -P 9066 -u root -p 查看MyCat执行的SQL, 执行效率比较低的SQL , SQL的整体执行情况、读写比例等 ; show @@sql ; show @@sql.slow ; show @@sql.sum ; |
useGlobleTableCheck | 0,1 | 是否开启全局表的一致性检测。1为开启 ,0为关闭 。 |
sqlExecuteTimeout | 1000 | SQL语句执行的超时时间 , 单位为 s ; |
sequnceHandlerType | 0,1,2 | 用来指定Mycat全局序列类型,0 为本地文件,1 为数据库方式,2 为时间戳列方式,默认使用本地文件方式,文件方式主要用于测试 |
sequnceHandlerPattern | 正则表达式 | 必须带有MYCATSEQ或者 mycatseq进入序列匹配流程 注意MYCATSEQ_有空格的情况 |
subqueryRelationshipCheck | true,false | 子查询中存在关联查询的情况下,检查关联字段中是否有分片字段 .默认 false |
useCompression | 0,1 | 开启mysql压缩协议 , 0 : 关闭, 1 : 开启 |
fakeMySQLVersion | 5.5,5.6 | 设置模拟的MySQL版本号 |
defaultSqlParser | 由于MyCat的最初版本使用了FoundationDB的SQL解析器, 在MyCat1.3后增加了Druid解析器, 所以要设置defaultSqlParser属性来指定默认的解析器; 解析器有两个 :druidparser 和 fdbparser, 在MyCat1.4之后,默认是druidparser,fdbparser已经废除了 | |
processors | 1,2… | 指定系统可用的线程数量, 默认值为CPU核心x 每个核心运行线程数量; processors 会影响processorBufferPool,processorBufferLocalPercent,processorExecutor属性, 所有, 在性能调优时, 可以适当地修改processors值 |
processorBufferChunk | 指定每次分配Socket Direct Buffer默认值为4096字节, 也会影响BufferPool长度,如果一次性获取字节过多而导致buffer不够用, 则会出现警告, 可以调大该值 | |
processorExecutor | 指定NIOProcessor上共享businessExecutor固定线程池的大小;MyCat把异步任务交给 businessExecutor线程池中, 在新版本的MyCat中这个连接池使用频次不高, 可以适当地把该值调小 | |
packetHeaderSize | 指定MySQL协议中的报文头长度, 默认4个字节 | |
maxPacketSize | 指定MySQL协议可以携带的数据最大大小, 默认值为16M | |
idleTimeout | 30 | 指定连接的空闲时间的超时长度;如果超时,将关闭资源并回收, 默认30分钟 |
txIsolation | 1,2,3,4 | 初始化前端连接的事务隔离级别,默认为REPEATED_READ , 对应数字为3 READ_UNCOMMITED=1;READ_COMMITTED=2; REPEATED_READ=3;SERIALIZABLE=4; |
sqlExecuteTimeout | 300 | 执行SQL的超时时间, 如果SQL语句执行超时,将关闭连接; 默认300秒; |
serverPort | 8066 | 定义MyCat的使用端口, 默认8066 |
managerPort | 9066 | 定义MyCat的管理端口, 默认9066 |
配置MyCat中的用户、访问密码,以及用户针对于逻辑库、逻辑表的权限信息,具体的权限描述方式及配置说明如下:
在测试权限操作时,我们只需要将 privileges 标签的注释放开。 在 privileges 下的schema标签中配置的dml属性配置的是逻辑库的权限。 在privileges的schema下的table标签的dml属性中配置逻辑表的权限。
在业务系统中, 涉及以下表结构 ,但是由于用户与订单每天都会产生大量的数据, 单台服务器的数据存储及处理能力是有限的, 可以对数据库表进行拆分, 原有的数据库表如下。
现在考虑将其进行垂直分库操作,将商品相关的表拆分到一个数据库服务器,订单表拆分的一个数据库服务器,用户及省市区表拆分到一个服务器。最终结构如下:
并且在192.168.200.210,192.168.200.213, 192.168.200.214上面创建数据库shopping。
<schema name="SHOPPING" checkSQLschema="true" sqlMaxLimit="100">
<table name="tb_goods_base" dataNode="dn1" primaryKey="id" />
<table name="tb_goods_brand" dataNode="dn1" primaryKey="id" />
<table name="tb_goods_cat" dataNode="dn1" primaryKey="id" />
<table name="tb_goods_desc" dataNode="dn1" primaryKey="goods_id" />
<table name="tb_goods_item" dataNode="dn1" primaryKey="id" />
<table name="tb_order_item" dataNode="dn2" primaryKey="id" />
<table name="tb_order_master" dataNode="dn2" primaryKey="order_id" />
<table name="tb_order_pay_log" dataNode="dn2" primaryKey="out_trade_no" />
<table name="tb_user" dataNode="dn3" primaryKey="id" />
<table name="tb_user_address" dataNode="dn3" primaryKey="id" />
<table name="tb_areas_provinces" dataNode="dn3" primaryKey="id"/>
<table name="tb_areas_city" dataNode="dn3" primaryKey="id"/>
<table name="tb_areas_region" dataNode="dn3" primaryKey="id"/>
schema>
<dataNode name="dn1" dataHost="dhost1" database="shopping" />
<dataNode name="dn2" dataHost="dhost2" database="shopping" />
<dataNode name="dn3" dataHost="dhost3" database="shopping" />
<dataHost name="dhost1" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.200.210:3306useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
dataHost>
<dataHost name="dhost2" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.200.213:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
dataHost>
<dataHost name="dhost3" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.200.214:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
dataHost>
<user name="root" defaultAccount="true">
<property name="password">123456property>
<property name="schemas">SHOPPINGproperty>
user>
<user name="user">
<property name="password">123456property>
<property name="schemas">SHOPPINGproperty>
<property name="readOnly">trueproperty>
user>
1). 上传测试SQL脚本到服务器的/root目录
2). 执行指令导入测试数据
重新启动MyCat后,在mycat的命令行中,通过source指令导入表结构,以及对应的数据,查看数据分布情况。
source /root/shopping-table.sql
source /root/shopping-insert.sql
将表结构及对应的测试数据导入之后,可以检查一下各个数据库服务器中的表结构分布情况。 检查是否和我们准备工作中规划的服务器一致。
3). 查询用户的收件人及收件人地址信息(包含省、市、区)。
在MyCat的命令行中,当我们执行以下多表联查的SQL语句时,可以正常查询出数据。
select
ua.user_id,
ua.contact,
p.province,
c.city,
r.area ,
ua.address
from
tb_user_address ua ,
tb_areas_city c ,
tb_areas_provinces p ,
tb_areas_region r
where ua.province_id = p.provinceid
and ua.city_id = c.cityid
and ua.town_id = r.areaid ;
4). 查询每一笔订单及订单的收件地址信息(包含省、市、区)。
实现该需求对应的SQL语句如下:
SELECT
order_id ,
payment ,
receiver,
province ,
city ,
area
FROM
tb_order_master o,
tb_areas_provinces p ,
tb_areas_city c ,
tb_areas_region r
WHERE
o.receiver_province = p.provinceid
AND o.receiver_city = c.cityid
AND o.receiver_region = r.areaid ;
但是现在存在一个问题,订单相关的表结构是在 192.168.200.213 数据库服务器中,而省市区的数据库表是在 192.168.200.214 数据库服务器中。那么在MyCat中执行是否可以成功呢?
经过测试,我们看到,SQL语句执行报错。原因就是因为MyCat在执行该SQL语句时,需要往具体的数据库服务器中路由,而当前没有一个数据库服务器完全包含了订单以及省市区的表结构,造成SQL语句失败,报错。
对于上述的这种现象,我们如何来解决呢? 下面我们介绍的全局表,就可以轻松解决这个问题。
对于省、市、区/县表tb_areas_provinces , tb_areas_city , tb_areas_region,是属于数据字典表,在多个业务模块中都可能会遇到,可以将其设置为全局表,利于业务操作。
修改schema.xml中的逻辑表的配置,修改 tb_areas_provinces、tb_areas_city、tb_areas_region 三个逻辑表,增加 type 属性,配置为global,就代表该表是全局表,就会在所涉及到的dataNode中创建给表。对于当前配置来说,也就意味着所有的节点中都有该表了。
<table name="tb_areas_provinces" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>
<table name="tb_areas_city" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>
<table name="tb_areas_region" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>
配置完毕后,重新启动MyCat。
1). 删除原来每一个数据库服务器中的所有表结构
2). 通过source指令,导入表及数据
source /root/shopping-table.sql
source /root/shopping-insert.sql
3). 检查每一个数据库服务器中的表及数据分布,看到三个节点中都有这三张全局表
4). 然后再次执行上面的多表联查的SQL语句
SELECT
order_id ,
payment ,
receiver,
province ,
city ,
area
FROM
tb_order_master o,
tb_areas_provinces p ,
tb_areas_city c ,
tb_areas_region r
WHERE
o.receiver_province = p.provinceid
AND o.receiver_city = c.cityid
AND o.receiver_region = r.areaid ;
5). 当在MyCat中更新全局表的时候,我们可以看到,所有分片节点中的数据都发生了变化,每个节点的全局表数据时刻保持一致。
在业务系统中, 有一张表(日志表), 业务系统每天都会产生大量的日志数据 , 单台服务器的数据存储及处理能力是有限的, 可以对数据库表进行拆分。
准备三台服务器,具体的结构如下:
并且,在三台数据库服务器中分表创建一个数据库angyan。
<schema name="ANGYAN" checkSQLschema="true" sqlMaxLimit="100">
<table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" />
schema>
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
<dataNode name="dn6" dataHost="dhost3" database="angyan" />
tb_log表最终落在3个节点中,分别是 dn4、dn5、dn6 ,而具体的数据分别存储在 dhost1、dhost2、dhost3的angyan数据库中。
配置root用户既可以访问 SHOPPING 逻辑库,又可以访问ANGYAN逻辑库。
<user name="root" defaultAccount="true">
<property name="password">123456property>
<property name="schemas">SHOPPING,AGYANproperty>
user>
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
CREATE TABLE tb_log (
id bigint(20) NOT NULL COMMENT 'ID',
model_name varchar(200) DEFAULT NULL COMMENT '模块名',
model_value varchar(200) DEFAULT NULL COMMENT '模块值',
return_value varchar(200) DEFAULT NULL COMMENT '返回值',
return_class varchar(200) DEFAULT NULL COMMENT '返回值类型',
operate_user varchar(20) DEFAULT NULL COMMENT '操作用户',
operate_time varchar(20) DEFAULT NULL COMMENT '操作时间',
param_and_value varchar(500) DEFAULT NULL COMMENT '请求参数名及参数值',
operate_class varchar(200) DEFAULT NULL COMMENT '操作类',
operate_method varchar(200) DEFAULT NULL COMMENT '操作方法',
cost_time bigint(20) DEFAULT NULL COMMENT '执行方法耗时, 单位 ms',
source int(1) DEFAULT NULL COMMENT '来源 : 1 PC , 2 Android , 3 IOS',
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,operate_user, operate_time, param_and_value, operate_class, operate_method,cost_time,source)VALUES('1','user','insert','success','java.lang.String','10001','2022-01-06 18:12:28','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.angya.controller.UserController','insert','10',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,operate_user, operate_time, param_and_value, operate_class, operate_method,cost_time,source)VALUES('2','user','insert','success','java.lang.String','10001','2022-01-06 18:12:27','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.angya.controller.UserController','insert','23',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,operate_user, operate_time, param_and_value, operate_class, operate_method,cost_time,source)VALUES('3','user','update','success','java.lang.String','10001','2022-01-06 18:16:45','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.angya.controller.UserController','update','34',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,operate_user, operate_time, param_and_value, operate_class, operate_method,cost_time,source)VALUES('4','user','update','success','java.lang.String','10001','2022-01-06 18:16:45','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.angya.controller.UserController','update','13',2);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,operate_user, operate_time, param_and_value, operate_class, operate_method,cost_time,source)VALUES('5','user','insert','success','java.lang.String','10001','2022-01-06 18:30:31','{\"age\":\"200\",\"name\":\"TomCat\",\"gender\":\"0\"}','cn.angya.controller.UserController','insert','29',3);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,operate_user, operate_time, param_and_value, operate_class, operate_method,cost_time,source)VALUES('6','user','find','success','java.lang.String','10001','2022-01-06 18:30:31','{\"age\":\"200\",\"name\":\"TomCat\",\"gender\":\"0\"}','cn.angya.controller.UserController','find','29',2);
根据指定的字段及其配置的范围与数据节点的对应情况, 来决定该数据属于哪一个分片。
schema.xml逻辑表配置:
<table name="TB_ORDER" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />
schema.xml数据节点配置:
<dataNode name="dn1" dataHost="dhost1" database="db01" />
<dataNode name="dn2" dataHost="dhost2" database="db01" />
<dataNode name="dn3" dataHost="dhost3" database="db01" />
rule.xml分片规则配置:
<tableRule name="auto-sharding-long">
<rule>
<columns>idcolumns>
<algorithm>rang-longalgorithm>
rule>
tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txtproperty>
<property name="defaultNode">0property>
function>
分片规则配置属性含义:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
mapFile | 对应的外部配置文件 |
type | 默认值为0 ; 0 表示Integer , 1 表示String |
defaultNode | 默认节点 ,枚举分片时,如果碰到不识别的枚举值, 就让它路由到默认节点 ; 如果没有默认值,碰到不识别的则报错 。 |
在rule.xml中配置分片规则时,关联了一个映射配置文件 autopartition-long.txt,该配置文件的配置如下:
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
含义:
该分片规则,主要是针对于数字类型的字段适用。 在MyCat的入门程序中,我们使用的就是该分片规则。
根据指定的字段值与节点数量进行求模运算,根据运算结果, 来决定该数据属于哪一个分片。
schema.xml逻辑表配置:
<table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" />
schema.xml数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
<dataNode name="dn6" dataHost="dhost3" database="angyan" />
rule.xml分片规则配置:
<tableRule name="mod-long">
<rule>
<columns>idcolumns>
<algorithm>mod-longalgorithm>
rule>
tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<property name="count">3property>
function>
分片规则属性说明如下:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
count | 数据节点的数量 |
该分片规则,主要是针对于数字类型的字段适用。 在前面水平拆分的演示中,我们选择的就是取模分片。
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
所谓一致性哈希,相同的哈希因子计算值总是被划分到相同的分区表中,不会因为分区节点的增加而改变原来数据的分区位置,有效的解决了分布式数据的拓容问题。
schema.xml中逻辑表配置:
<table name="tb_order" dataNode="dn4,dn5,dn6" rule="sharding-by-murmur" />
schema.xml中数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
<dataNode name="dn6" dataHost="dhost3" database="angyan" />
rule.xml中分片规则配置:
<tableRule name="sharding-by-murmur">
<rule>
<columns>idcolumns>
<algorithm>murmuralgorithm>
rule>
tableRule>
<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0property>
<property name="count">3property>
<property name="virtualBucketTimes">160property>
function>
分片规则属性含义:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
seed | 创建murmur_hash对象的种子,默认0 |
count | 要分片的数据库节点数量,必须指定,否则没法分片 |
virtualBucketTimes | 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍;virtualBucketTimes*count就是虚拟结点数量 ; |
weightMapFile | 节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替 |
bucketMapPath | 用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 |
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
create table tb_order(
id varchar(100) not null primary key,
money int null,
content varchar(200) null
);
INSERT INTO tb_order (id, money, content) VALUES ('b92fdaaf-6fc4-11ec-b831-482ae33c4a2d', 10, 'b92fdaf8-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93482b6-6fc4-11ec-b831-482ae33c4a2d', 20, 'b93482d5-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b937e246-6fc4-11ec-b831-482ae33c4a2d', 50, 'b937e25d-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93be2dd-6fc4-11ec-b831-482ae33c4a2d', 100, 'b93be2f9-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93f2d68-6fc4-11ec-b831-482ae33c4a2d', 130, 'b93f2d7d-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9451b98-6fc4-11ec-b831-482ae33c4a2d', 30, 'b9451bcc-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9488ec1-6fc4-11ec-b831-482ae33c4a2d', 560, 'b9488edb-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b94be6e6-6fc4-11ec-b831-482ae33c4a2d', 10, 'b94be6ff-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b94ee10d-6fc4-11ec-b831-482ae33c4a2d', 123, 'b94ee12c-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b952492a-6fc4-11ec-b831-482ae33c4a2d', 145, 'b9524945-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95553ac-6fc4-11ec-b831-482ae33c4a2d', 543, 'b95553c8-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9581cdd-6fc4-11ec-b831-482ae33c4a2d', 17, 'b9581cfa-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95afc0f-6fc4-11ec-b831-482ae33c4a2d', 18, 'b95afc2a-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95daa99-6fc4-11ec-b831-482ae33c4a2d', 134, 'b95daab2-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9667e3c-6fc4-11ec-b831-482ae33c4a2d', 156, 'b9667e60-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b96ab489-6fc4-11ec-b831-482ae33c4a2d', 175, 'b96ab4a5-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b96e2942-6fc4-11ec-b831-482ae33c4a2d', 180, 'b96e295b-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b97092ec-6fc4-11ec-b831-482ae33c4a2d', 123, 'b9709306-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b973727a-6fc4-11ec-b831-482ae33c4a2d', 230, 'b9737293-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b978840f-6fc4-11ec-b831-482ae33c4a2d', 560, 'b978843c-6fc4-11ec-b831-482ae33c4a2d');
通过在配置文件中配置可能的枚举值, 指定数据分布到不同数据节点上, 本规则适用于按照省份、性别、状态拆分数据等业务 。
schema.xml中逻辑表配置:
<table name="tb_user" dataNode="dn4,dn5,dn6" rule="sharding-by-intfile-enumstatus"/>
schema.xml中数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
<dataNode name="dn6" dataHost="dhost3" database="angyan" />
rule.xml中分片规则配置:
<tableRule name="sharding-by-intfile">
<rule>
<columns>sharding_idcolumns>
<algorithm>hash-intalgorithm>
rule>
tableRule>
<tableRule name="sharding-by-intfile-enumstatus">
<rule>
<columns>statuscolumns>
<algorithm>hash-intalgorithm>
rule>
tableRule>
<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="defaultNode">2property>
<property name="mapFile">partition-hash-int.txtproperty>
function>
partition-hash-int.txt ,内容如下 :
1=0
2=1
3=2
分片规则属性含义:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
mapFile | 对应的外部配置文件 |
type | 默认值为0 ; 0 表示Integer , 1 表示String |
defaultNode | 默认节点 ; 小于0 标识不设置默认节点 , 大于等于0代表设置默认节点 ;默认节点的所用:枚举分片时,如果碰到不识别的枚举值, 就让它路由到默认节点 ; 如果没有默认值,碰到不识别的则报错 。 |
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
CREATE TABLE tb_user (
id bigint(20) NOT NULL COMMENT 'ID',
username varchar(200) DEFAULT NULL COMMENT '姓名',
status int(2) DEFAULT '1' COMMENT '1: 未启用, 2: 已启用, 3: 已关闭',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
insert into tb_user (id,username ,status) values(1,'Tom',1);
insert into tb_user (id,username ,status) values(2,'Cat',2);
insert into tb_user (id,username ,status) values(3,'Rose',3);
insert into tb_user (id,username ,status) values(4,'Coco',2);
insert into tb_user (id,username ,status) values(5,'Lily',1);
insert into tb_user (id,username ,status) values(6,'Tom',1);
insert into tb_user (id,username ,status) values(7,'Cat',2);
insert into tb_user (id,username ,status) values(8,'Rose',3);
insert into tb_user (id,username ,status) values(9,'Coco',2);
insert into tb_user (id,username ,status) values(10,'Lily',1);
运行阶段由应用自主决定路由到那个分片 , 直接根据字符子串(必须是数字)计算分片号。
schema.xml中逻辑表配置:
<table name="tb_app" dataNode="dn4,dn5,dn6" rule="sharding-by-substring" />
schema.xml中数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
<dataNode name="dn6" dataHost="dhost3" database="angyan" />
rule.xml中分片规则配置:
<tableRule name="sharding-by-substring">
<rule>
<columns>idcolumns>
<algorithm>sharding-by-substringalgorithm>
rule>
tableRule>
<function name="sharding-by-substring" class="io.mycat.route.function.PartitionDirectBySubString">
<property name="startIndex">0property>
<property name="size">2property>
<property name="partitionCount">3property>
<property name="defaultPartition">0property>
function>
分片规则属性含义:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
startIndex | 字符子串起始索引 |
size | 字符长度 |
partitionCount | 分区(分片)数量 |
defaultPartition | 默认分片(在分片数量定义时, 字符标示的分片编号不在分片数量内时,使用默认分片) |
示例说明 :
id=05-100000002 , 在此配置中代表根据id中从 startIndex=0,开始,截取siz=2位数字即05,05就是获取的分区,如果没找到对应的分片则默认分配到defaultPartition 。
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
CREATE TABLE tb_app (
id varchar(10) NOT NULL COMMENT 'ID',
name varchar(200) DEFAULT NULL COMMENT '名称',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
insert into tb_app (id,name) values('0000001','Testx00001');
insert into tb_app (id,name) values('0100001','Test100001');
insert into tb_app (id,name) values('0100002','Test200001');
insert into tb_app (id,name) values('0200001','Test300001');
insert into tb_app (id,name) values('0200002','TesT400001');
该算法类似于十进制的求模运算,但是为二进制的操作,例如,取 id 的二进制低 10 位 与1111111111 进行位 & 运算,位与运算最小值为 0000000000,最大值为1111111111,转换为十进制,也就是位于0-1023之间。
特点:
如果是求模,连续的值,分别分配到各个不同的分片;但是此算法会将连续的值可能分配到相同的分片,降低事务处理的难度。
可以均匀分配,也可以非均匀分配。
分片字段必须为数字类型。
schema.xml中逻辑表配置:
<table name="tb_longhash" dataNode="dn4,dn5,dn6" rule="sharding-by-long-hash" />
schema.xml中数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
<dataNode name="dn6" dataHost="dhost3" database="angyan" />
rule.xml中分片规则配置:
<tableRule name="sharding-by-long-hash">
<rule>
<columns>idcolumns>
<algorithm>sharding-by-long-hashalgorithm>
rule>
tableRule>
<function name="sharding-by-long-hash" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">2,1property>
<property name="partitionLength">256,512property>
function>
分片规则属性含义:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段名 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
partitionCount | 分片个数列表 |
partitionLength | 分片范围列表 |
约束 :
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
CREATE TABLE tb_longhash (
id int(11) NOT NULL COMMENT 'ID',
name varchar(200) DEFAULT NULL COMMENT '名称',
firstChar char(1) COMMENT '首字母',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
insert into tb_longhash (id,name,firstChar) values(1,'七匹狼','Q');
insert into tb_longhash (id,name,firstChar) values(2,'八匹狼','B');
insert into tb_longhash (id,name,firstChar) values(3,'九匹狼','J');
insert into tb_longhash (id,name,firstChar) values(4,'十匹狼','S');
insert into tb_longhash (id,name,firstChar) values(5,'六匹狼','L');
insert into tb_longhash (id,name,firstChar) values(6,'五匹狼','W');
insert into tb_longhash (id,name,firstChar) values(7,'四匹狼','S');
insert into tb_longhash (id,name,firstChar) values(8,'三匹狼','S');
insert into tb_longhash (id,name,firstChar) values(9,'两匹狼','L');
截取字符串中的指定位置的子字符串, 进行hash算法, 算出分片。
schema.xml中逻辑表配置:
<table name="tb_strhash" dataNode="dn4,dn5" rule="sharding-by-stringhash" />
schema.xml中数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
rule.xml中分片规则配置:
<tableRule name="sharding-by-stringhash">
<rule>
<columns>namecolumns>
<algorithm>sharding-by-stringhashalgorithm>
rule>
tableRule>
<function name="sharding-by-stringhash" class="io.mycat.route.function.PartitionByString">
<property name="partitionLength">512property>
<property name="partitionCount">2property>
<property name="hashSlice">0:2property>
function>
分片规则属性含义:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
partitionLength | hash求模基数 ; length*count=1024 (出于性能考虑) |
partitionCount | 分区数 |
hashSlice | hash运算位 , 根据子字符串的hash运算 ; 0 代表 str.length(), -1 代表 str.length()-1 , 大于0只代表数字自身 ; 可以理解为substring(start,end),start为0则只表示0 |
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
create table tb_strhash(
name varchar(20) primary key,
content varchar(100)
)engine=InnoDB DEFAULT CHARSET=utf8mb4;
INSERT INTO tb_strhash (name,content) VALUES('T1001', UUID());
INSERT INTO tb_strhash (name,content) VALUES('ROSE', UUID());
INSERT INTO tb_strhash (name,content) VALUES('JERRY', UUID());
INSERT INTO tb_strhash (name,content) VALUES('CRISTINA', UUID());
INSERT INTO tb_strhash (name,content) VALUES('TOMCAT', UUID());
schema.xml中逻辑表配置:
<table name="tb_datepart" dataNode="dn4,dn5,dn6" rule="sharding-by-date" />
schema.xml中数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
<dataNode name="dn6" dataHost="dhost3" database="angyan" />
rule.xml中分片规则配置:
<tableRule name="sharding-by-date">
<rule>
<columns>create_timecolumns>
<algorithm>sharding-by-datealgorithm>
rule>
tableRule>
<function name="sharding-by-date" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-ddproperty>
<property name="sBeginDate">2022-01-01property>
<property name="sEndDate">2022-01-30property>
<property name="sPartionDay">10property>
function>
分片规则属性含义:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
dateFormat | 日期格式 |
sBeginDate | 开始日期 |
sEndDate | 结束日期,如果配置了结束日期,则代码数据到达了这个日期的分片后,会重复从开始分片插入 |
sPartionDay | 分区天数,默认值 10 ,从开始日期算起,每个10天一个分区 |
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
create table tb_datepart(
id bigint not null comment 'ID' primary key,
name varchar(100) null comment '姓名',
create_time date null
);
insert into tb_datepart(id,name ,create_time) values(1,'Tom','2022-01-01');
insert into tb_datepart(id,name ,create_time) values(2,'Cat','2022-01-10');
insert into tb_datepart(id,name ,create_time) values(3,'Rose','2022-01-11');
insert into tb_datepart(id,name ,create_time) values(4,'Coco','2022-01-20');
insert into tb_datepart(id,name ,create_time) values(5,'Rose2','2022-01-21');
insert into tb_datepart(id,name ,create_time) values(6,'Coco2','2022-01-30');
insert into tb_datepart(id,name ,create_time) values(7,'Coco3','2022-01-31');
schema.xml中逻辑表配置:
<table name="tb_monthpart" dataNode="dn4,dn5,dn6" rule="sharding-by-month" />
schema.xml中数据节点配置:
<dataNode name="dn4" dataHost="dhost1" database="angyan" />
<dataNode name="dn5" dataHost="dhost2" database="angyan" />
<dataNode name="dn6" dataHost="dhost3" database="angyan" />
rule.xml中分片规则配置:
<tableRule name="sharding-by-month">
<rule>
<columns>create_timecolumns>
<algorithm>partbymonthalgorithm>
rule>
tableRule>
<function name="partbymonth" class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-ddproperty>
<property name="sBeginDate">2022-01-01property>
<property name="sEndDate">2022-03-31property>
function>
分片规则属性含义:
属性 | 描述 |
---|---|
columns | 标识将要分片的表字段 |
algorithm | 指定分片函数与function的对应关系 |
class | 指定该分片算法对应的类 |
dateFormat | 日期格式 |
sBeginDate | 开始日期 |
sEndDate | 结束日期,如果配置了结束日期,则代码数据到达了这个日期的分片后,会重复从开始分片插入 |
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
create table tb_monthpart(
id bigint not null comment 'ID' primary key,
name varchar(100) null comment '姓名',
create_time date null
);
insert into tb_monthpart(id,name ,create_time) values(1,'Tom','2022-01-01');
insert into tb_monthpart(id,name ,create_time) values(2,'Cat','2022-01-10');
insert into tb_monthpart(id,name ,create_time) values(3,'Rose','2022-01-31');
insert into tb_monthpart(id,name ,create_time) values(4,'Coco','2022-02-20');
insert into tb_monthpart(id,name ,create_time) values(5,'Rose2','2022-02-25');
insert into tb_monthpart(id,name ,create_time) values(6,'Coco2','2022-03-10');
insert into tb_monthpart(id,name ,create_time) values(7,'Coco3','2022-03-31');
insert into tb_monthpart(id,name ,create_time) values(8,'Coco4','2022-04-10');
insert into tb_monthpart(id,name ,create_time) values(9,'Coco5','2022-04-30');
在MyCat中,当执行一条SQL语句时,MyCat需要进行SQL解析、分片分析、路由分析、读写分离分析等操作,最终经过一系列的分析决定将当前的SQL语句到底路由到那几个(或哪一个)节点数据库,数据库将数据执行完毕后,如果有返回的结果,则将结果返回给MyCat,最终还需要在MyCat中进行结果合并、聚合处理、排序处理、分页处理等操作,最终再将结果返回给客户端。
而在MyCat的使用过程中,MyCat官方也提供了一个管理监控平台MyCat-Web(MyCat-eye)。Mycat-web 是 Mycat 可视化运维的管理和监控平台,弥补了 Mycat 在监控上的空白。帮 Mycat分担统计任务和配置管理任务。Mycat-web 引入了 ZooKeeper 作为配置中心,可以管理多个节点。Mycat-web 主要管理和监控 Mycat 的流量、连接、活动线程和内存等,具备 IP 白名单、邮件告警等模块,还可以统计 SQL 并分析慢 SQL 和高频 SQL 等。为优化 SQL 提供依据。
Mycat默认开通2个端口,可以在server.xml中进行修改。
8066 数据访问端口,即进行 DML 和 DDL 操作。
9066 数据库管理端口,即 mycat 服务管理控制功能,用于管理mycat的整个集群状态
连接MyCat的管理控制台:
mysql -h 192.168.200.210 -p 9066 -uroot -p123456
命令 | 含义 |
---|---|
show @@help | 查看Mycat管理工具帮助文档 |
show @@version | 查看Mycat的版本 |
reload @@config | 重新加载Mycat的配置文件 |
show @@datasource | 查看Mycat的数据源信息 |
show @@datanode | 查看MyCat现有的分片节点信息 |
show @@threadpool | 查看Mycat的线程池信息 |
show @@sql | 查看执行的SQL |
show @@sql.sum | 查看执行的SQL统计 |
Mycat-web(Mycat-eye)是对mycat-server提供监控服务,功能不局限于对mycat-server使用。他通过JDBC连接对Mycat、Mysql监控,监控远程服务器(目前仅限于linux系统)的cpu、内存、网络、磁盘。
Mycat-eye运行过程中需要依赖zookeeper,因此需要先安装zookeeper。
1).、zookeeper安装
A. 上传安装包
zookeeper-3.4.6.tar.gz
B. 解压
tar -zxvf zookeeper-3.4.6.tar.gz -C /usr/local/
cd /usr/local/zookeeper-3.4.6/
mkdir data
cd config
mv zoo_sample.cfg zoo.cfg
dataDir=/usr/local/zookeeper-3.4.6/data
bin/zkServer.sh start
bin/zkServer.sh status
2). Mycat-web安装
A. 上传安装包
Mycat-web.tar.gz
B. 解压
tar -zxvf Mycat-web.tar.gz -C /usr/local/
C. 目录介绍
etc ----> jetty配置文件
lib ----> 依赖jar包
mycat-web ----> mycat-web项目
readme.txt
start.jar ----> 启动jar
start.sh ----> linux启动脚本
sh start.sh
http://192.168.200.210:8082/mycat
1). 开启MyCat的实时统计功能(server.xml)
<property name="useSqlStat">1property>
配置好了之后,我们可以通过MyCat执行一系列的增删改查的测试,然后过一段时间之后,打开mycat-eye的管理界面,查看mycat-eye监控到的数据信息。
B. 物理节点
C. SQL统计
D. SQL表分析
E. SQL监控
F. 高频SQL
读写分离,简单地说是把对数据库的读和写操作分开,以对应不同的数据库服务器。主数据库提供写操
作,从数据库提供读操作,这样能有效地减轻单台数据库的压力。
通过MyCat即可轻易实现上述功能,不仅可以支持MySQL,也可以支持Oracle和SQL Server。
MySQL的主从复制,是基于二进制日志(binlog)实现的。
主机 | 角色 | 用户名 | 密码 |
---|---|---|---|
192.168.200.211 | master | root | 1234 |
192.168.200.212 | slave | root | 1234 |
MyCat控制后台数据库的读写分离和负载均衡由schema.xml文件datahost标签的balance属性控
制。
<schema name="ANGYAN_RW" checkSQLschema="true" sqlMaxLimit="100" dataNode="dn7"/>
<dataNode name="dn7" dataHost="dhost7" database="angyan" />
<dataHost name="dhost7" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master1" url="jdbc:mysql://192.168.200.211:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" >
<readHost host="slave1" url="jdbc:mysql://192.168.200.212:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
writeHost>
dataHost>
上述配置的具体关联对应情况如下:
writeHost代表的是写操作对应的数据库,readHost代表的是读操作对应的数据库。 所以我们要想
实现读写分离,就得配置writeHost关联的是主库,readHost关联的是从库。
而仅仅配置好了writeHost以及readHost还不能完成读写分离,还需要配置一个非常重要的负责均衡
的参数 balance,取值有4种,具体含义如下:
参数值 | 含义 |
---|---|
0 | 不开启读写分离机制 , 所有读操作都发送到当前可用的writeHost上 |
1 | 全部的readHost 与 备用的writeHost 都参与select 语句的负载均衡(主要针对于双主双从模式) |
2 | 所有的读写操作都随机在writeHost , readHost上分发 |
3 | 所有的读请求随机分发到writeHost对应的readHost上执行, writeHost不负担读压力 |
所以,在一主一从模式的读写分离中,balance配置1或3都是可以完成读写分离的。
配置root用户可以访问SHOPPING、ANGYAN以及 ANGYAN_RW逻辑库。
<user name="root" defaultAccount="true">
<property name="password">123456property>
<property name="schemas">SHOPPING,ANGYAN,ANGYAN_RWproperty>
user>
配置完毕MyCat后,重新启动MyCat。
bin/mycat stop
bin/mycat start
然后观察,在执行增删改操作时,对应的主库及从库的数据变化。 在执行查询操作时,检查主库及从库对应的数据变化。
一个主机 Master1 用于处理所有写请求,它的从机 Slave1 和另一台主机 Master2 还有它的从
机 Slave2 负责所有读请求。当 Master1 主机宕机后,Master2 主机负责写请求,Master1 、
Master2 互为备机。架构图如下:
我们需要准备5台服务器,具体的服务器及软件安装情况如下:
编号 | IP | 预装软件 | 角色 |
---|---|---|---|
1 | 192.168.200.210 | MyCat、MySQL | MyCat中间件服务器 |
2 | 192.168.200.211 | MySQL | M1 |
3 | 192.168.200.212 | MySQL | S1 |
4 | 192.168.200.213 | MySQL | M2 |
5 | 192.168.200.214 | MySQL | S2 |
关闭以上所有服务器的防火墙:
- systemctl stop firewalld
- systemctl disable firewalld
A. 修改配置文件 /etc/my.cnf
#mysql 服务ID,保证整个集群环境中唯一,取值范围:1 – 2^32-1,默认为1
server-id=1
#指定同步的数据库
binlog-do-db=db01
binlog-do-db=db02
binlog-do-db=db03
# 在作为从数据库的时候,有写入操作也要更新二进制日志文件
log-slave-updates
B. 重启MySQL服务器
systemctl restart mysqld
C. 创建账户并授权
#创建angyan用户,并设置密码,该用户可在任意主机连接该MySQL服务
CREATE USER 'angyan'@'%' IDENTIFIED WITH mysql_native_password BY 'Root@123456';
#为 'angyan'@'%' 用户分配主从复制权限
GRANT REPLICATION SLAVE ON *.* TO 'angyan'@'%';
通过指令,查看两台主库的二进制日志坐标
show master status ;
2). Master2(192.168.200.213)
A. 修改配置文件 /etc/my.cnf
#mysql 服务ID,保证整个集群环境中唯一,取值范围:1 – 2^32-1,默认为1
server-id=3
#指定同步的数据库
binlog-do-db=db01
binlog-do-db=db02
binlog-do-db=db03
# 在作为从数据库的时候,有写入操作也要更新二进制日志文件
log-slave-updates
B. 重启MySQL服务器
systemctl restart mysqld
C. 创建账户并授权
#创建angyan用户,并设置密码,该用户可在任意主机连接该MySQL服务
CREATE USER 'angyan'@'%' IDENTIFIED WITH mysql_native_password BY 'Root@123456';
#为 'angyan'@'%' 用户分配主从复制权限
GRANT REPLICATION SLAVE ON *.* TO 'angyan'@'%';
通过指令,查看两台主库的二进制日志坐标
show master status ;
1). Slave1(192.168.200.212)
A. 修改配置文件 /etc/my.cnf
#mysql 服务ID,保证整个集群环境中唯一,取值范围:1 – 232-1,默认为1
server-id=2
B. 重新启动MySQL服务器
systemctl restart mysqld
2). Slave2(192.168.200.214)
A. 修改配置文件 /etc/my.cnf
#mysql 服务ID,保证整个集群环境中唯一,取值范围:1 – 232-1,默认为1
server-id=4
B. 重新启动MySQL服务器
systemctl restart mysqld
需要注意slave1对应的是master1,slave2对应的是master2。
A. 在 slave1(192.168.200.212)上执行
CHANGE MASTER TO MASTER_HOST='192.168.200.211', MASTER_USER='angyan',MASTER_PASSWORD='Root@123456', MASTER_LOG_FILE='binlog.000002',MASTER_LOG_POS=663;
B. 在 slave2(192.168.200.214)上执行
CHANGE MASTER TO MASTER_HOST='192.168.200.213', MASTER_USER='angyan',MASTER_PASSWORD='Root@123456', MASTER_LOG_FILE='binlog.000002',MASTER_LOG_POS=663;
C. 启动两台从库主从复制,查看从库状态
start slave;
show slave status \G;
Master2 复制 Master1,Master1 复制 Master2。
A. 在 Master1(192.168.200.211)上执行
CHANGE MASTER TO MASTER_HOST='192.168.200.213', MASTER_USER='angyan',MASTER_PASSWORD='Root@123456', MASTER_LOG_FILE='binlog.000002',MASTER_LOG_POS=663;
B. 在 Master2(192.168.200.213)上执行
CHANGE MASTER TO MASTER_HOST='192.168.200.211', MASTER_USER='angyan',MASTER_PASSWORD='Root@123456', MASTER_LOG_FILE='binlog.000002',MASTER_LOG_POS=663;
C. 启动两台从库主从复制,查看从库状态
start slave;
show slave status \G;
经过上述的三步配置之后,双主双从的复制结构就已经搭建完成了。 接下来,我们可以来测试验证一下。
分别在两台主库Master1、Master2上执行DDL、DML语句,查看涉及到的数据库服务器的数据同步情况。
create database db01;
use db01;
create table tb_user(
id int(11) not null primary key ,
name varchar(50) not null,
sex varchar(1)
)engine=innodb default charset=utf8mb4;
insert into tb_user(id,name,sex) values(1,'Tom','1');
insert into tb_user(id,name,sex) values(2,'Trigger','0');
insert into tb_user(id,name,sex) values(3,'Dawn','1');
insert into tb_user(id,name,sex) values(4,'Jack Ma','1');
insert into tb_user(id,name,sex) values(5,'Coco','0');
insert into tb_user(id,name,sex) values(6,'Jerry','1');
在Master1中执行DML、DDL操作,看看数据是否可以同步到另外的三台数据库中。
在Master2中执行DML、DDL操作,看看数据是否可以同步到另外的三台数据库中。
MyCat控制后台数据库的读写分离和负载均衡由schema.xml文件datahost标签的balance属性控制,通过writeType及switchType来完成失败自动切换的。
1). schema.xml
配置逻辑库:
<schema name="ANGYAN_RW2" checkSQLschema="true" sqlMaxLimit="100" dataNode="dn7"/>
配置数据节点:
<dataNode name="dn7" dataHost="dhost7" database="db01" />
配置节点主机:
<dataHost name="dhost7" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()heartbeat>
<writeHost host="master1" url="jdbc:mysql://192.168.200.211:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" >
<readHost host="slave1" url="jdbc:mysql://192.168.200.212:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
writeHost>
<writeHost host="master2" url="jdbc:mysql://192.168.200.213:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" >
<readHost host="slave2" url="jdbc:mysql://192.168.200.214:3306?useSSL=false&serverTimezone=Asia/Shanghai&characterEncoding=utf8" user="root" password="1234" />
writeHost>
dataHost>
属性说明:
- balance=“1”
代表全部的 readHost 与 stand by writeHost 参与 select 语句的负载均衡,简单的说,当双主双从模式(M1->S1,M2->S2,并且 M1 与 M2 互为主备),正常情况下,M2,S1,S2 都参与 select 语句的负载均衡 ;
- writeType
0 : 写操作都转发到第1台writeHost, writeHost1挂了, 会切换到writeHost2上;
1 : 所有的写操作都随机地发送到配置的writeHost上 ;
- switchType
-1 : 不自动切换
1 : 自动切换
2). user.xml
配置root用户也可以访问到逻辑库 ANGYAN_RW2。
<user name="root" defaultAccount="true">
<property name="password">123456property>
<property name="schemas">SHOPPING,ANGYAN,ANGYAN_RW2property>
user>
登录MyCat,测试查询及更新操作,判定是否能够进行读写分离,以及读写分离的策略是否正确。
当主库挂掉一个之后,是否能够自动切换。