- NLP_知识图谱_大模型——个人学习记录
macken9999
自然语言处理知识图谱大模型自然语言处理知识图谱学习
1.自然语言处理、知识图谱、对话系统三大技术研究与应用https://github.com/lihanghang/NLP-Knowledge-Graph深度学习-自然语言处理(NLP)-知识图谱:知识图谱构建流程【本体构建、知识抽取(实体抽取、关系抽取、属性抽取)、知识表示、知识融合、知识存储】-元気森林-博客园https://www.cnblogs.com/-402/p/16529422.htm
- 【论文阅读】Decoupled Knowledge Distillation
Bosenya12
论文阅读
摘要:最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而logit蒸馏的重要性则被大大忽视了。为了提供研究logit蒸馏的新观点,我们将经典的KD损失重新表述为两部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们实证调查并证明了两部分的效果:TCKD传递了有关训练样本“困难”的知识,而NCKD是logit蒸馏起作用的突出原因。更重要的是,我们揭示了经典的KD损失是一个耦合公式,
- 解决Chrome被恶意插件插件更改默认搜索引擎的成功案例
qq_37908264
啊啊啊啊啊我太激动了!!第一次成功解决病毒!!!!教程在此https://soft2secure.com.tw/knowledgebase/search-marquis下面是我的问题描述,如果一样,就可以按照上面的教程操作了!【背景】Mac电脑,问题是Chrome的搜索引擎被恶意篡改,并且没有更改回来的选项,可能是因为我有一段时间关掉了电脑的防火墙(不要学我!!千万不要)下图(左边)就是这个恶意插
- 【图像超分】论文精读:MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能图像处理计算机视觉超分辨率重建论文阅读论文笔记
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)前言论文题目:MTKD:Multi-TeacherKnowledgeDistillationforImageSuper-Resolution——MTKD:图像超分辨率的多教师知识蒸馏论文
- 认知引擎的系统性提升路径:从投影到本体的智慧涌现
核心议题:结合从投影(Projection)推断本体(Ontology)的根本挑战,旨在设计一套认知引擎的系统性提升路径。其最终目标是在知识基础设施(GlobalKnowledgeInfrastructure,GKI)中,构建一个可持续、可进化、能够自我完善并不断逼近“知识奇点”的认知系统。设计视角:以“知识架构师”(KnowledgeArchitect)的身份,我们将构建一个涵盖认知机制、知识结
- Fastapi实现文档上传
cts618
FastAPIfastapi
fromfastapiimportFastAPI,UploadFilefromenumimportEnumimportuvicornapp=FastAPI()classKnowledgeBaseType(str,Enum):PRIVATE="private"PUBLIC="public"@app.post("/upload")defupload_file(file:UploadFile,kb_de
- 【知识图谱构建系列1】数据集介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱
文章目录项目简介数据集简介数据集核心内容应用与影响小细节参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/项目简介我们所要学习的项目(LLM4KGC)聚焦于利用大语言模型(LLMs)实现从文本到知识图谱(Text-to-KnowledgeGraph,T2KG)的自动化构建,旨在探索高效可靠的知识
- RAG和KAG的区别
testresultstomorrow
人工智能pythonjava知识图谱
RAG(Retrieval-AugmentedGeneration,检索增强生成)和KAG(Knowledge-AugmentedGeneration,知识增强生成)都是用于增强生成模型能力的框架,但它们在多个方面存在区别,以下是具体介绍:原理与知识处理方式RAG:基于检索和生成的结合,用户查询经检索系统处理后,从外部知识源检索相关文档或段落,再将这些作为上下文输入生成模型,生成相关回复。KAG:
- MCP智能体多Agent协作系统设计(Multi-Agent Cooperation)
gs80140
mcpmcp人工智能
目录MCP智能体多Agent协作系统设计(Multi-AgentCooperation)为什么需要多Agent协作?多Agent协作系统架构设计️1.构建基础智能体基类(AgentBase)️2.定义各专属子智能体(SpecializedAgents)文件专家智能体(FileAgent)知识专家智能体(KnowledgeAgent)总结专家智能体(SummaryAgent)️3.构建总控智能体(O
- 什么是零知识证明(Zero-Knowledge Proof, ZKP)
MonkeyKing.sun
零知识证明区块链
零知识证明(Zero-KnowledgeProof,ZKP)是一种密码学技术,它允许你向对方证明你“知道一个秘密”,但又不泄露这个秘密的任何信息。它的最大特点是:✅证明有效性,❌不暴露内容。一、零知识证明是什么?(通俗理解)想象你是爱丽丝(Alice),你知道一个藏宝图的密码,你想向鲍勃(Bob)证明你确实知道这个密码,但又不想告诉他密码是什么。零知识证明就像魔法一样地完成这件事:你证明你知道答案
- [论文阅读] 软件工程 | 需求工程中领域知识研究:系统映射与创新突破
张较瘦_
前沿技术论文阅读软件工程
需求工程中领域知识研究:系统映射与创新突破论文信息DomainKnowledgeinRequirementsEngineering:ASystematicMappingStudyarXiv:2506.20754DomainKnowledgeinRequirementsEngineering:ASystematicMappingStudyMarinaAraújo,JúliaAraújo,RomeuO
- 设计模式(二)
醇醛酸醚酮酯
设计模式设计模式
迪米特法则(最少知识原则):定义、核心思想与实践解析一、迪米特法则(LoD)的核心定义迪米特法则(LawofDemeter,LoD),又称“最少知识原则(LeastKnowledgePrinciple)”,是面向对象设计的经典指导原则之一。其核心思想是:一个对象应当尽可能少地与其他对象发生相互作用,只与“直接的朋友”通信,避免与“陌生人”产生直接交互。二、关键概念:“直接的朋友”与“陌生人”直接的
- 【RAG面试题】LLMs已经具备了较强能力,存在哪些不足点?
一叶千舟
AI面试题【RAG】RAG
目录LLMs核心不足点1、知识过时与静态性(LackofReal-Time&DynamicKnowledge):2、幻觉与事实性错误(Hallucinations&FactualInaccuracies):3、领域专业知识深度不足(LimitedDomain-SpecificExpertise):4、缺乏透明度和可追溯性(LackofTransparency&Traceability):5、上下文
- 大模型——Dify:知识库与外部知识库
不二人生
大模型人工智能大模型dify
Dify:知识库与外部知识库相比于AI大模型内置的静态预训练数据,知识库中的内容能够实时更新,确保LLM可以访问到最新的信息,避免因信息过时或遗漏而产生的问题。知识库与文档开发者可以通过此方式确保LLM不仅仅依赖于训练数据中的知识,还能够处理来自实时文档和数据库的动态数据,从而提高回答的准确性和相关性。https://docs.dify.ai/zh-hans/guides/knowledge-ba
- knowledge-vue2项目(Electron)打包为PC桌面应用程序
岂不闻
learnorimporveelectronjavascript前端
1.使用nvm管理node版本不同的项目开发需要的node版本环境不一样,所以需要使用nvm进行版本管理。关键命令:(1)检查nvm版本号是否安装成功nvm-v(2)检查所有node版本号nvmls(3)安装指定node版本16nvminstall16.18.1(4)使用对应的node版本nvmuse16.18.1(5)检查当前node版本是否正确node-v相关参考博客:nvm安装(降低node
- 大语言模型的通用局限性与全球技术演进
止观止
人工智能大语言模型语言模型人工智能自然语言处理
基于行业最新数据修订(2025Q2)一、知识截止期:全球模型的进化差异所有LLM都存在知识截止期(KnowledgeCut-off),即模型训练数据的时间上限。这在技术迭代飞快的软件开发领域尤为致命——2023年后发布的Python3.12新特性、React18的并发渲染等更新,旧模型可能完全遗漏。核心局限:传统LLM训练数据存在硬性断点(如GPT-4截止至2023年9月)模型知识截止期更新方案G
- Antv AVA入门教程
德育处主任Pro
前端框架
以下教程聚焦AVA核心包中的CKB(ChartKnowledgeBase)模块,详细介绍其安装、引入及核心API,每个方法均给出完整示例代码。一、安装#安装AVA核心包,包含ckb模块npminstall@antv/ava--save#如需单独使用CKBJSON,也可安装独立包npminstall@antv/ckb--save二、模块引入2.1从@antv/ava引入import{ckb}from
- RAG 处理流程
成都犀牛
网络自然语言处理神经网络深度学习RAG
下面是处理流程图UserSystemEmbeddingModelRetrieverRerankerLLMKnowledgeBase输入问题(Query)用嵌入模型编码QueryQuery向量用Query向量检索查找相似向量(原始使用嵌入模型编码)返回TopK文档块原始检索结果对结果重排序(可选)精排后文档组合:Query+相关文档生成最终回答返回答案UserSystemEmbeddingModel
- Apriori 算法
sbc-study
算法机器学习
Apriori算法是关联规则挖掘领域的经典算法,尤其用于发现交易数据库。一核心思想(1)Apriori原则:核心:如果一个项集是频繁的,那么它的所有子集也一定是频繁的。逆否命题:如果一个项集的某个子集不是频繁的,那么这个项集本身也绝不可能是频繁的。(2)名称由来:此原则描述了算法使用的先验知识(AprioriKnowledge),即利用已知频繁项集的信息来产生候选集并高效地减少无效项的搜索空间。(
- 【GESP】C++三级知识点研究,一维数组声明合法性
CoderCodingNo
GESPc++开发语言
一维数组是GESPC++三级考试大纲中的要求,(5)C++一维数组基本应用;Python列表、字典、元组、集合的基本应用、内置函数以及列表解析的使用.在以往的GESP考试真题中,除在编程题中经常使用到一维数组外,在前面的客观题中还会经常出现关于一维数组声明合法性的题目。因此,本文针对该知识点进行详细的整理。全文详见:https://www.coderli.com/gesp-3-knowledge-
- Learning to Incorporate Structure Knowledge for Image Inpainting
yijun009
图像修复论文
LearningtoIncorporateStructureKnowledgeforImageInpaintingMotivationMethods框架:AttentionLayerStructureEmbeddingLayerPyramidStructureLossExperimentreference原文链接:link.Motivation图像修复旨在用合理且充满细节的内容填充损坏的图像区域或
- 【设计模式-迪米特法则】
严文文-Chris
设计模式设计模式迪米特法则java
迪米特法则(LawofDemeter,LoD),也称为最少知识原则(PrincipleofLeastKnowledge),是一种面向对象编程中的设计原则。它的核心思想是:一个对象应当尽可能少地了解其他对象,即只与直接相关的对象通信,而不要过度依赖外部对象的内部细节。通过减少对象之间的耦合度,提升代码的可维护性、可扩展性以及模块化程度。1.迪米特法则的定义迪米特法则的定义可以简单概括为:不要与陌生人
- 设计模式-迪米特法则(Law of Demeter, LoD)
英杰.王
设计模式迪米特法则servlet
迪米特法则(LawofDemeter,LoD)别名:最少知识原则(LeastKnowledgePrinciple)核心思想:一个对象应尽可能少地与其他对象发生交互,只与直接的朋友(成员变量、方法参数、方法返回值中的对象)通信,避免依赖间接的类。原理详解直接朋友的定义:当前对象的成员变量。当前对象方法的参数。当前对象方法的返回值。当前对象方法中创建的对象(不推荐,但允许)。禁止链式调用:避免出现a.
- 知识库检索接口参数设置
CCSBRIDGE
人工智能人工智能
在使用智能问答系统或知识库类产品时,“检索接口”是非常关键的一环。理解其请求参数,能够帮助我们更高效地精准获取答案,提升系统性能和用户体验。本文将详细解读知识库检索接口中可控参数的含义、使用场景与建议配置。1.基础标识类参数name(知识库名称)类型:string|是否必填:否说明:定义知识库的名称,仅允许英文、数字、下划线,并且必须以字母开头,1-64个字符。示例:my_knowledge_ba
- Knowledge Graph Contrastive Learning for Recommendation(KGCL)阅读笔记
forever0827
知识图谱笔记人工智能推荐算法
现有知识图谱(KG)的稀疏性和噪声使得项目-实体依赖关系偏离了反映其真实特征,从而显着放大了噪声效应,阻碍了用户偏好的准确表示。为了填补这一研究空白,作者设计了一个通用的知识图对比学习框架(KGCL),该框架可以减轻知识图增强推荐系统的信息噪声。论文链接:https://doi.org/10.1145/3477495.3532009代码链接:https://github.com/yuh-yang/
- [论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
张较瘦_
前沿技术人工智能软件工程结对编程
当AI成为编程搭档:结对编程中的知识转移新图景论文信息论文标题:FromDeveloperPairstoAICopilots:AComparativeStudyonKnowledgeTransfer(从开发者结对到AI副驾驶:知识转移的对比研究)作者及机构:AlisaWelter等来自德国萨尔兰大学,ChristofTinnes同时隶属于西门子公司发表平台:arXiv预印本平台发表时间:2025年
- Kubernetes服务安全加固
寰宇001
转载来源:https://help.aliyun.com/knowledge_detail/60782.html介绍Kubernetes提供了许多可以极大地提高应用程序安全性的选项,配置它们要求您熟悉Kubernetes以及其部署的安全要求。本文具体介绍了Kubernetes服务的安全加固方案,帮助您部署安全的Kubernetes应用。安全加固方案确保镜像没有安全漏洞在部署前,应该确保所有的操作系
- KBS(Knowledge-Based Systems)期刊投稿记录
myccver
人工智能
记录一些关键时间节点2023.12.31投稿2024.01.30返回审稿意见2024.05.20提交r12024.05.31返回审稿意见(conditionalaccept)包括语言润色2024.06.09提交r2,没有使用爱思维尔的润色2024.06.10witheditor2024.06.13underreview2024.06.24revise(折磨)2024.07.01提交r32024.0
- 【图像去噪】论文精读:Rotation-Equivariant Self-Supervised Method in Image Denoising(AdaReNet)
十小大
深度学习人工智能图像处理计算机视觉图像去噪论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.RelatedWorkandPriorKnowledge2.1.ImageDenoising2.2.RotationE
- RabbitMQ面试题
御风行云天
面试题大全rabbitmq分布式
RabbitMQ面试题1RabbitMQ基础1.1什么是RabbitMQ,它的基本架构是怎样的?1.2RabbitMQ中的交换器(Exchange)有哪些类型,各自的特点是什么?1.3死信队列(Dead-LetterQueue)是什么,使用场景有哪些?2消息队列原理2.1什么是持久化消息(PersistentMessage)?2.2什么是消息确认(MessageAcknowledgement),它
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f