- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- PySpark
静听山水
Sparkspark
PySpark的本质确实是Python的一个接口层,它允许你使用Python语言来编写ApacheSpark应用程序。通过这个接口,你可以利用Spark强大的分布式计算能力,同时享受Python的易用性和灵活性。1、PySpark的工作原理PySpark的工作原理可以概括为以下几个步骤:编写Python代码:开发者使用Python语法来编写Spark应用程序。这些程序通常涉及创建RDDs(弹性分布
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- Apache Flink 替换 Spark Stream的架构与实践( bilibili 案例解读)_streamsparkflink加载udf(1)
2401_84165953
程序员flinkspark架构
2.开发架构设计(1)开发架构图:如下图左侧所示。最上层是Saber-Streamer,主要进行作业提交以及API管理。下一层是BSQL层,主要进行SQL的扩展和解析,包括自定义算子和个性算子。再下层是运行时态,下面是引擎层。运行时态主要管理引擎层作业的上下层。bilibili早期使用的引擎是SparkStreaming,后期扩展了Flink,在开发架构中预留了一部分引擎层的扩展。最下层是状态存储
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd
2401_84187537
数据分析数据挖掘
DataFrame.show()使用格式:df.show()df.show(1)+---+---+-------+----------+-------------------+|a|b|c|d|e|+---+---+-------+----------+-------------------+|1|2.0|string1|2000-01-01|2000-01-0112:00:00|+---+---
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd(1)
2401_84181368
程序员数据分析数据挖掘
dfDataFrame[a:bigint,b:double,c:string,d:date,e:timestamp]####通过由元组列表组成的RDD创建rdd=spark.sparkContext.parallelize([(1,2.,‘string1’,date(2000,1,1),datetime(2000,1,1,12,0)),(2,3.,‘string2’,date(2000,2,1),
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd(2)
2401_84181403
程序员数据分析数据挖掘
轻松切换到pandasAPI和PySparkAPI上下文,无需任何开销。有一个既适用于pandas(测试,较小的数据集)又适用于Spark(分布式数据集)的代码库。熟练使用pandas的话很快上手3.StreamingApacheSpark中的Streaming功能运行在Spark之上,支持跨Streaming和历史数据的强大交互和分析应用程序,同时继承了Spark的易用性和容错特性。SparkS
- Pyspark DataFrame常用操作函数和示例
还是那个同伟伟
Spark人工智能机器学习pandaspysparkspark
针对类型:pyspark.sql.dataframe.DataFrame目录1.打印前几行1.1show()函数1.2take()函数2.读取文件2.1spark.read.csv3.获取某行某列的值(具体值)4.查看列名5.修改列名5.1修改单个列名5.2修改多个列名5.2.1链式调用withColumnRenamed方法5.2.2使用selectExpr方法6.pandas类型转化为pyspa
- 大数据秋招面经之spark系列
wq17629260466
大数据spark
文章目录前言spark高频面试题汇总1.spark介绍2.spark分组取TopN方案总结:方案2是最佳方案。3.repartition与coalesce4.spark的oom问题怎么产生的以及解决方案5.storm与flink,sparkstreaming之间的区别6.spark的几种部署方式:7.复习spark的yarn-cluster模式执行流程:8.spark的job提交流程:9.spar
- spark读取csv文件
静听山水
Sparkspark
测试spark读取本地和hdfs文件frompyspark.sqlimportSparkSessionspark=SparkSession.builder\.appName("ExamplePySparkScript")\.getOrCreate()#读取本地csv文件df=spark.read.csv("/Users/xiaokkk/Desktop/local_projects/spark/in
- SparkStreaming业务逻辑处理的一些高级算子
看见我的小熊没
sparkStreamingscalasparkbigdatascala
1、reduceByKey reduceByKey是按key进行计算,操作的数据是每个批次内的数据(一个采集周期),不能跨批次计算。如果需要实现对历史数据的跨批次统计累加,则需要使用updateStateByKey算子或者mapWithState算子。packagecom.sparkscala.streamingimportorg.apache.log4j.{Level,Logger}impor
- Spark与Kafka进行连接
傲雪凌霜,松柏长青
后端大数据sparkkafka
在Java中使用Spark与Kafka进行连接,你可以使用SparkStreaming来处理实时流数据。以下是一个简单的示例,展示了如何使用SparkStreaming从Kafka读取数据并进行处理。1.引入依赖首先,在你的pom.xml文件中添加必要的依赖项(假设你在使用Maven):org.apache.sparkspark-core_2.123.4.0org.apache.sparkspar
- 最全金融数据_PySpark-3(2),大数据开发学习的三个终极问题及学习路线规划
2401_84185145
大数据面试学习
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新需要这份系统化资料的朋友,可以戳这里获取frompyspark.ml.evaluationimportBinaryClassificationEv
- spark streaming优点和缺点
scott_alpha
优点:sparkstreaming会被转化为spark作业执行,由于spark作业依赖DAGScheduler和RDD,所以是粗粒度方式而不是细粒度方式,可以快速处理小批量数据,获得准实时的特性;以spark作业提交和执行,很方便的实现容错机制;DStreaming是在RDD上的抽象,更容易与RDD进行交互操作。需要将流式数据与批数据结合分析的情况下,非常方便。缺点:不可避免的延迟
- kafka消费者重复消费同一个topic
小琳ai
大数据kafka重复消费consumer
我的需求是我有多个消费者,需要重复消费某一个topic。场景是sparkstreaming消费kafka数据在这里sparkstream和kafka都是单节点的集群模式。同时起两个不同的groupid的应用,发现会发生后起来的应用消费不到数据。按理来讲不同的groupid属于不同的消费组,不会相互影响。由于是使用的cdh集成的kafka,不知道cdh里的zookeeper管理kafka的数据存在了
- SparkStreaming结合kafka将offSet保存在redis中
哈哈xxy
bigdatasparkStreamingkafkaoffsetredis
SparkStreaming结合kafka将offSet保存在redis中SparkStreaming结合kafka的两种方式1、SparkStreaming的高级APiCreateDStream,容易发生数据多次读取,官方已经不推荐2、SparkStreaming的低级APicreateDirectStream需要自己保存offset保存方式有两大类,一类是Spark自带的checkpoint(
- Spark Streaming+Kafka整合+offset管理
JiahuiTian
大数据#Spark#Kafkakafkaspark大数据
Kafka0-8Receiver模式和Direct模式都不适合当前版本不适用,本次学习采用Kafka0-10Direct模式,并通过第三方存储zookeeper来手动管理offset目录前言offset管理一个完整的整合代码Demo(Java版)导入相关的Maven依赖创建通过ZK管理Offset的工具类测试类Demo前言SparkStreaming获取Kafka的数据有两种方式:Receiver
- Spark(46) -- SparkStreaming整合kafka数据源
erainm
大数据学习spark
1.回顾Kafka可以看我前面kafka文章核心概念图解Broker:安装Kafka服务的机器就是一个brokerProducer:消息的生产者,负责将数据写入到broker中(push)Consumer:消息的消费者,负责从kafka中拉取数据(pull),老版本的消费者需要依赖zk,新版本的不需要Topic:主题,相当于是数据的一个分类,不同topic存放不同业务的数据--主题:区分业务Rep
- PySpark操作DataFrame常用方法
百流
PySpark使用笔记sparkpython大数据
文章目录PYSPARKDataFrame操作.na1.`drop()`2.drop(subset)3.fill(value,subset)4.replac(to_replace,value,subset)colwithColumns()when()otherwise()replace(str,search,replace)Row对象StructType,StructField,数据类型Struct
- spark mllib 特征学习笔记 (一)
路人与大师
spark-ml学习笔记
PySparkMLlib特征处理详解PySparkMLlib提供了丰富的特征处理工具,帮助我们进行特征提取、转换和选择。以下是PySparkMLlib中常用的特征处理类及其简要介绍。1.BinarizerBinarizer是将连续特征二值化的转换器。frompyspark.ml.featureimportBinarizerbinarizer=Binarizer(threshold=0.5,inpu
- SparkStreaming 如何保证消费Kafka的数据不丢失不重复
K. Bob
SparkSpark
目录SparkStreaming接收Kafka数据的方式有两种:Receiver接收数据和采用Direct方式。(1)一个Receiver效率低,需要开启多个线程,手动合并数据再进行处理,并且Receiver方式为确保零数据丢失,需要开启WAL(预写日志)保证数据安全,这将同步保存所有收到的Kafka数据到HDFS,以便在发生故障时可以恢复所有数据。尽管WAL可以保证数据零丢失,但是不能保证exa
- SparkSQL优化查询性能的方法
大数据海中游泳的鱼
Spark大数据优化spark大数据
一、PySpark如何提高程序的运行效率和性能PySpark的运行效率和性能受到多个因素的影响,包括数据大小、算法复杂度、硬件资源等。以下是一些提高PySpark程序运行效率和性能的方法:1.使用DataFrame而不是RDDDataFrame比RDD更高效,因为它们使用了更为优化的二进制编码格式和查询引擎。如果可能,尽量使用DataFrame而不是RDD。2.使用广播变量(BroadcastVa
- spark采坑集锦之用kafka作为DStream数据源,并行度问题
方兵兵
spark采坑集锦
在SparkStreaming中作为数据源的Kafka怎样接收多主题发送的数据呢?使用StreamingContext.union方法将多个streaming流合并处理defmain(args:Array[String]):Unit={Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)valconf=newSparkConf().s
- PySpark,一个超级强大的 Python 库
炒青椒不放辣
Python库之旅pythonPython库之旅PySpark
大家好!我是炒青椒不放辣,关注我,收看每期的编程干货。一个简单的库,也许能够开启我们的智慧之门,一个普通的方法,也许能在危急时刻挽救我们于水深火热,一个新颖的思维方式,也许能激发我们无尽的创造力,一个独特的技巧,也许能成为我们的隐形盾牌……神奇的Python库之旅,第14章目录一、初识PySpark二、基本操作三、DataFrame和SparkSQL四、机器学习与流处理五、实战案例六、结语七、作者
- 大数据技术——RDD编程初级实践
@璿
spark
RDD编程初级实践1、需求描述2、环境介绍3、数据来源描述4、数据上传及上传结果查看5、数据处理过程描述1.pyspark交互式编程2.编写独立应用程序实现数据去重3.编写独立应用程序实现求平均值问题6、经验总结1、需求描述在当今社会,随着大数据的快速发展情况下,大数据已经完全融入到我们的生活中。为了适应各种信息化技术的快速发展,我作为计算机专业的学生,学习大数据这项技术是必不可少的。这次的实验是
- 【Pyspark-驯化】一文搞懂Pyspark修改hive表描述以及增加列使用技巧
算法驯化师
pyspark大数据hivehadoop数据仓库pysparkspark分布式大数据
【Pyspark-驯化】一文搞懂Pyspark修改hive表描述以及增加列使用技巧本次修炼方法请往下查看欢迎莅临我的个人主页这里是我工作、学习、实践IT领域、真诚分享踩坑集合,智慧小天地!相关内容文档获取微信公众号相关内容视频讲解B站博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验。技术专长:在
- 【Pyspark-驯化】一文搞懂Pyspark写入hive表的使用技巧
算法驯化师
pyspark大数据hivehadoop数据仓库spark分布式pysparkhdfs
【Pyspark-驯化】一文搞懂Pyspark写入hive表的使用技巧本次修炼方法请往下查看欢迎莅临我的个人主页这里是我工作、学习、实践IT领域、真诚分享踩坑集合,智慧小天地!相关内容文档获取微信公众号相关内容视频讲解B站博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验。技术专长:在机器学习、搜
- 【Pyspark-驯化】一文搞懂Pyspark中对json数据处理使用技巧:get_json_object
算法驯化师
pyspark大数据jsonhadoop大数据分布式hdfspyspark
【Pyspark-驯化】一文搞懂Pyspark中对json数据处理使用技巧:get_json_object本次修炼方法请往下查看欢迎莅临我的个人主页这里是我工作、学习、实践IT领域、真诚分享踩坑集合,智慧小天地!相关内容文档获取微信公众号相关内容视频讲解B站博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项
- 【Pyspark-驯化】一文搞懂Pyspark中dropDuplicates和sort的使用技巧
算法驯化师
pyspark大数据hadoop大数据分布式hdfspyspark
【Pyspark-驯化】一文搞懂Pyspark中dropDuplicates和sort的使用技巧本次修炼方法请往下查看欢迎莅临我的个人主页这里是我工作、学习、实践IT领域、真诚分享踩坑集合,智慧小天地!相关内容文档获取微信公众号相关内容视频讲解B站博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo