2.labelme转yolo格式和MS COCO格式

2.labelme转yolo格式和MS COCO格式

2.1 数据集划分

import os
import random
import shutil

def moveimg(fileDir, tarDir):
    pathDir = os.listdir(fileDir)  # 取图片的原始路径
    filenumber = len(pathDir)
    rate = 0.01  # 自定义抽取图片的比例,比方说100张抽10张,那就是0.1
    picknumber = int(filenumber * rate)  # 按照rate比例从文件夹中取一定数量图片
    sample = random.sample(pathDir, picknumber)  # 随机选取picknumber数量的样本图片
    print(sample)
    for name in sample:
        shutil.move(fileDir + name, tarDir + "\\" + name)
    return


def movelabel(file_list, file_label_train, file_label_val):
    for i in file_list:
        if (i.endswith('.png') or i.endswith('.jpg') ):
            # filename = file_label_train + "\\" + i[:-4] + '.xml'  # 可以改成xml文件将’.txt‘改成'.xml'就可以了
            # filename = file_label_train + "\\" + i[:-4] + '.txt'  # 可以改成xml文件将’.txt‘改成'.xml'就可以了
            filename = file_label_train + i[:-4] + '.json'
            # print(filename)
            if os.path.exists(filename):
                shutil.move(filename, file_label_val)
                print(i + "处理成功!")


if __name__ == '__main__':
    Dataset_name = "Triangle_215_Keypoint_Labelme"
    fileDir = r"../data/train/train_pic/" + Dataset_name + "/"# 源图片文件夹路径
    tarDir = r"../data/val/val_pic/" + Dataset_name + "/"# 图片移动到新的文件夹路径
    if not os.path.exists(tarDir):
        os.mkdir(tarDir)

    moveimg(fileDir, tarDir)
    file_list = os.listdir(tarDir)


    file_label_train = r"../data/train/labelme_label/" + Dataset_name + "/"# 源图片标签路径
    file_label_val = r"../data/val/labelme_label/" + Dataset_name + "/"# 标签

    if not os.path.exists(file_label_val):
        os.mkdir(file_label_val)
    # 移动到新的文件路径
    movelabel(file_list, file_label_train, file_label_val)

2.2 labelme转yolo格式

一个txt文件对应一张图片

2.2.1 yolo格式keypoint annotation txt文件中某一行的意义

以这张图为例
2.labelme转yolo格式和MS COCO格式_第1张图片

这张三角板的yolo格式标注信息及其意义如下:

2.labelme转yolo格式和MS COCO格式_第2张图片

2.2.2labelme2yolo-keypoint-单个转换

import os
import json
import numpy as np

# 框的类别
bbox_class = {
    'sjb_rect':0  
}

# 关键点的类别
keypoint_class = ['angle_30', 'angle_60', 'angle_90']

labelme_path = 'DSC_0209.json'
with open(labelme_path, 'r', encoding='utf-8') as f:
    labelme = json.load(f)

img_width = labelme['imageWidth']   # 图像宽度
img_height = labelme['imageHeight'] # 图像高度

# 生成 YOLO 格式的 txt 文件
suffix = labelme_path.split('.')[-2]
yolo_txt_path = suffix + '.txt'

with open(yolo_txt_path, 'w', encoding='utf-8') as f:
    
    for each_ann in labelme['shapes']: # 遍历每个标注

        if each_ann['shape_type'] == 'rectangle': # 如果遇到框
            
            yolo_str = ''
            
            ## 框的信息
            # 框的类别 ID
            bbox_class_id = bbox_class[each_ann['label']]
            yolo_str += '{} '.format(bbox_class_id)
            # 左上角和右下角的 XY 像素坐标
            bbox_top_left_x = int(min(each_ann['points'][0][0], each_ann['points'][1][0]))
            bbox_bottom_right_x = int(max(each_ann['points'][0][0], each_ann['points'][1][0]))
            bbox_top_left_y = int(min(each_ann['points'][0][1], each_ann['points'][1][1]))
            bbox_bottom_right_y = int(max(each_ann['points'][0][1], each_ann['points'][1][1]))
            # 框中心点的 XY 像素坐标
            bbox_center_x = int((bbox_top_left_x + bbox_bottom_right_x) / 2)
            bbox_center_y = int((bbox_top_left_y + bbox_bottom_right_y) / 2)
            # 框宽度
            bbox_width = bbox_bottom_right_x - bbox_top_left_x
            # 框高度
            bbox_height = bbox_bottom_right_y - bbox_top_left_y
            # 框中心点归一化坐标
            bbox_center_x_norm = bbox_center_x / img_width
            bbox_center_y_norm = bbox_center_y / img_height
            # 框归一化宽度
            bbox_width_norm = bbox_width / img_width
            # 框归一化高度
            bbox_height_norm = bbox_height / img_height
            
            yolo_str += '{:.5f} {:.5f} {:.5f} {:.5f} '.format(bbox_center_x_norm, bbox_center_y_norm, bbox_width_norm, bbox_height_norm)
            
            ## 找到该框中所有关键点,存在字典 bbox_keypoints_dict 中
            bbox_keypoints_dict = {}
            for each_ann in labelme['shapes']: # 遍历所有标注
                if each_ann['shape_type'] == 'point': # 筛选出关键点标注
                    # 关键点XY坐标、类别
                    x = int(each_ann['points'][0][0])
                    y = int(each_ann['points'][0][1])
                    label = each_ann['label']
                    if (x>bbox_top_left_x) & (x<bbox_bottom_right_x) & (y<bbox_bottom_right_y) & (y>bbox_top_left_y): # 筛选出在该个体框中的关键点
                        bbox_keypoints_dict[label] = [x, y]
            
            ## 把关键点按顺序排好
            for each_class in keypoint_class: # 遍历每一类关键点
                if each_class in bbox_keypoints_dict:
                    keypoint_x_norm = bbox_keypoints_dict[each_class][0] / img_width
                    keypoint_y_norm = bbox_keypoints_dict[each_class][1] / img_height
                    yolo_str += '{:.5f} {:.5f} {} '.format(keypoint_x_norm, keypoint_y_norm, 2) # 2-可见不遮挡 1-遮挡 0-没有点
                else: # 不存在的点,一律为0
                    yolo_str += '0 0 0 '.format(keypoint_x_norm, keypoint_y_norm, 0)
            # 写入 txt 文件中
            f.write(yolo_str + '\n')
            
print('{} --> {} 转换完成'.format(labelme_path, yolo_txt_path))

2.2.3labelme2yolo-keypoint-批量转换

目录结构如下:

yolov8/
├─.ipynb_checkpoints/
│ └─labelme2yolo-keypoint-批量转换-checkpoint.ipynb
├─labelme2yolo-keypoint-单个转换/
│ ├─.ipynb_checkpoints/
│ ├─DSC_0209.jpg
│ ├─DSC_0209.json
│ ├─DSC_0209.txt
│ └─labelme2yolo-keypoint-单个转换.ipynb
├─labelme2yolo-keypoint-批量转换.ipynb
└─SJB_25_Dataset/
  ├─labelme_jsons/
  └─labels/

批量转换代码如下:

import os
import json
import shutil

# 函数 处理单个labelme标注json文件
def process_single_json(labelme_path, save_folder='../../labels/train'):
    
    with open(labelme_path, 'r', encoding='utf-8') as f:
        labelme = json.load(f)

    img_width = labelme['imageWidth']   # 图像宽度
    img_height = labelme['imageHeight'] # 图像高度

    # 生成 YOLO 格式的 txt 文件
    suffix = labelme_path.split('.')[-2]
    yolo_txt_path = suffix + '.txt'

    with open(yolo_txt_path, 'w', encoding='utf-8') as f:

        for each_ann in labelme['shapes']: # 遍历每个标注

            if each_ann['shape_type'] == 'rectangle': # 每个框,在 txt 里写一行

                yolo_str = ''

                ## 框的信息
                # 框的类别 ID
                bbox_class_id = bbox_class[each_ann['label']]
                yolo_str += '{} '.format(bbox_class_id)
                # 左上角和右下角的 XY 像素坐标
                bbox_top_left_x = int(min(each_ann['points'][0][0], each_ann['points'][1][0]))
                bbox_bottom_right_x = int(max(each_ann['points'][0][0], each_ann['points'][1][0]))
                bbox_top_left_y = int(min(each_ann['points'][0][1], each_ann['points'][1][1]))
                bbox_bottom_right_y = int(max(each_ann['points'][0][1], each_ann['points'][1][1]))
                # 框中心点的 XY 像素坐标
                bbox_center_x = int((bbox_top_left_x + bbox_bottom_right_x) / 2)
                bbox_center_y = int((bbox_top_left_y + bbox_bottom_right_y) / 2)
                # 框宽度
                bbox_width = bbox_bottom_right_x - bbox_top_left_x
                # 框高度
                bbox_height = bbox_bottom_right_y - bbox_top_left_y
                # 框中心点归一化坐标
                bbox_center_x_norm = bbox_center_x / img_width
                bbox_center_y_norm = bbox_center_y / img_height
                # 框归一化宽度
                bbox_width_norm = bbox_width / img_width
                # 框归一化高度
                bbox_height_norm = bbox_height / img_height

                yolo_str += '{:.5f} {:.5f} {:.5f} {:.5f} '.format(bbox_center_x_norm, bbox_center_y_norm, bbox_width_norm, bbox_height_norm)

                ## 找到该框中所有关键点,存在字典 bbox_keypoints_dict 中
                bbox_keypoints_dict = {}
                for each_ann in labelme['shapes']: # 遍历所有标注
                    if each_ann['shape_type'] == 'point': # 筛选出关键点标注
                        # 关键点XY坐标、类别
                        x = int(each_ann['points'][0][0])
                        y = int(each_ann['points'][0][1])
                        label = each_ann['label']
                        if (x>bbox_top_left_x) & (x<bbox_bottom_right_x) & (y<bbox_bottom_right_y) & (y>bbox_top_left_y): # 筛选出在该个体框中的关键点
                            bbox_keypoints_dict[label] = [x, y]

                ## 把关键点按顺序排好
                for each_class in keypoint_class: # 遍历每一类关键点
                    if each_class in bbox_keypoints_dict:
                        keypoint_x_norm = bbox_keypoints_dict[each_class][0] / img_width
                        keypoint_y_norm = bbox_keypoints_dict[each_class][1] / img_height
                        yolo_str += '{:.5f} {:.5f} {} '.format(keypoint_x_norm, keypoint_y_norm, 2) # 2-可见不遮挡 1-遮挡 0-没有点
                    else: # 不存在的点,一律为0
                        yolo_str += '0 0 0 '
                # 写入 txt 文件中
                f.write(yolo_str + '\n')
                
    shutil.move(yolo_txt_path, save_folder)
    print('{} --> {} 转换完成'.format(labelme_path, yolo_txt_path)) 

# 数据集文件夹名称
Dataset_root = 'SJB_25_Dataset'
# 框的类别
bbox_class = {
    'sjb_rect':0  
}
# 关键点的类别
keypoint_class = ['angle_30', 'angle_60', 'angle_90']

labelme_json_path = Dataset_root+'/labelme_jsons'

if not os.path.exists(Dataset_root+'/labels'):
    os.mkdir(Dataset_root+'/labels')
if not os.path.exists(Dataset_root+'/labels/train'):
    os.mkdir(Dataset_root+'/labels/train')
if not os.path.exists(Dataset_root+'/labels/val'):
    os.mkdir(Dataset_root+'/labels/val')
  
os.chdir(labelme_json_path)
save_folder = '../labels/train'
for labelme_path in os.listdir():
    try:
        process_single_json(labelme_path, save_folder=save_folder)
    except:
        print('******有误******', labelme_path)
print('YOLO格式的txt标注文件已保存至 ', save_folder)

2.3 labelme转MS COCO格式

一个json文件包含数据集的全部标注信息

2.3.1 MS COCO数据集介绍

MS COCO全称是Microsoft Common Objects in Context,是由微软开发维护的大型图像数据集,包括不同检测任务:

  • Object Detection([主要处理人、车、大象等])

2.labelme转yolo格式和MS COCO格式_第3张图片

  • DensePose(姿态密度检测)

  • Keypoints(关键点检测)

2.labelme转yolo格式和MS COCO格式_第4张图片

  • Stuff([主要处理草、墙、天等])
    2.labelme转yolo格式和MS COCO格式_第5张图片

  • Panoptic(场景分割)

2.labelme转yolo格式和MS COCO格式_第6张图片

  • Captions(字幕标注)

2.labelme转yolo格式和MS COCO格式_第7张图片

2.3.2 MS COCO数据格式

MS COCO使用JSON存储标注数据

2.3.2.1 data format

这里以关键点检测的验证集为例,查看它的json内容

import json
json_path = r"D:\Python\Jupyter\pytorch\yolov8\MS COCO\annotations\person_keypoints_val2017.json"
json_labels = json.load(open(json_path, "r"))

第一层结构如下,包含infolicensesimagesannotationscategories,共五个对象

2.labelme转yolo格式和MS COCO格式_第8张图片

info保存数据集的信息

2.labelme转yolo格式和MS COCO格式_第9张图片

licenses保存数据集的许可协议

2.labelme转yolo格式和MS COCO格式_第10张图片

images保存每张图片的信息,如图片文件名、宽、高等信息
2.labelme转yolo格式和MS COCO格式_第11张图片

annotations保存标注信息:

参数 参数含义
segmentation 保存polygon数据
num_keypoints 表示给定对象的标记关键点数量(对象集合或小对象的num_keypoints值为0)
area 保存目标面积
iscrowd 值为0表示单个对象,值为1表示对象集合
keypoints 是一个长度为3k的数组,其中k是定义的关键点类别总数(在MS COCO中k=17)。每个关键点按顺序依次存储横坐标x,纵坐标y和关键点可见性v。v=0:未标记(此情况下,x=y=0),v=1:标记但不可见,v=2:标记且可见。如果关键点位于上面segmentation的框内,则该关键点被视为可见
image_id 表示MS COCO数据集的图片id
bbox 保存边界框(bounding box)左上角点的横纵坐标、宽度和高度
category_id 表示类别id
id 表示label的id,也就是每一个label(人、等车实例对应的bbox)都有一个和它一一对应的id。一个image_id可以对应多个id(一张图片上有多个label),而一个id只能对应一个image_id

2.labelme转yolo格式和MS COCO格式_第12张图片

categories保存类别信息:

2.labelme转yolo格式和MS COCO格式_第13张图片

关键点检测的JSON结构如下:

{
	"info" : {
		"year" : int, 
		"version" : str, 
		"description" : str, 
		"contributor" : str, 
		"url" : str, 
		"date_created" : datetime,
	},
	"licenses" : {
        "id" : int, 
        "name" : str, 
        "url" : str,
    },
	"images" : {
        "id" : int, 
        "width" : int, 
        "height" : int, 
        "file_name" : str, 
        "license" : int, 
        "flickr_url" : str, 
        "coco_url" : str, 
        "date_captured" : datetime,
    }, 
	"annotations" : {
		"segmentation" : RLE or [polygon],
		"num_keypoints" : int,
		"area" : float,
		"iscrowd" : 0 or 1,
		"keypoints" : [x1,y1,v1,...],
		"image_id" : int,
		"bbox" : [x,y,width,height],
		"category_id" : int,
		"id" : int,
	}, 
	"categories" : {
		"supercategory" : str,
		"id" : int,
		"name" : str,
        "keypoints" : [str], 
        "skeleton" : [edge], 
	},
}

2.3.2.1 result format

还是只展示关键点检测的结果

[{
	"image_id": int, 
	"category_id": int, 
	"keypoints": [x1,y1,v1,...,xk,yk,vk], 
	"score": float,
}]

2.3.3 labelme2MSCOCO-keypoint-单个转换

import os
import json
import numpy as np

# 函数-处理单个labelme标注json文件
def process_single_json(labelme, image_id=1):
    '''
    输入labelme的json数据,输出coco格式的每个框的关键点标注信息
    '''
    
    global ANN_ID
    
    coco_annotations = []
    
    for each_ann in labelme['shapes']: # 遍历该json文件中的所有标注

        if each_ann['shape_type'] == 'rectangle': # 筛选出框

            # 该框元数据
            bbox_dict = {}
            bbox_dict['category_id'] = 1
            bbox_dict['segmentation'] = []
            
            bbox_dict['iscrowd'] = 0
            bbox_dict['segmentation'] = []
            bbox_dict['image_id'] = image_id
            bbox_dict['id'] = ANN_ID
            # print(ANN_ID)
            ANN_ID += 1

            # 获取该框坐标
            bbox_left_top_x = min(int(each_ann['points'][0][0]), int(each_ann['points'][1][0]))
            bbox_left_top_y = min(int(each_ann['points'][0][1]), int(each_ann['points'][1][1]))
            bbox_right_bottom_x = max(int(each_ann['points'][0][0]), int(each_ann['points'][1][0]))
            bbox_right_bottom_y = max(int(each_ann['points'][0][1]), int(each_ann['points'][1][1]))
            bbox_w = bbox_right_bottom_x - bbox_left_top_x
            bbox_h = bbox_right_bottom_y - bbox_left_top_y
            bbox_dict['bbox'] = [bbox_left_top_x, bbox_left_top_y, bbox_w, bbox_h] # 左上角x、y、框的w、h
            bbox_dict['area'] = bbox_w * bbox_h
            
            # 筛选出分割多段线
            for each_ann in labelme['shapes']: # 遍历所有标注
                if each_ann['shape_type'] == 'polygon': # 筛选出分割多段线标注
                    # 第一个点的坐标
                    first_x = each_ann['points'][0][0]
                    first_y = each_ann['points'][0][1]
                    if (first_x>bbox_left_top_x) & (first_x<bbox_right_bottom_x) & (first_y<bbox_right_bottom_y) & (first_y>bbox_left_top_y): # 筛选出在该个体框中的关键点
                        bbox_dict['segmentation'] = list(map(lambda x: list(map(lambda y: round(y, 2), x)), each_ann['points'])) # 坐标保留两位小数
                        # bbox_dict['segmentation'] = each_ann['points']

            # 筛选出该个体框中的所有关键点
            bbox_keypoints_dict = {}
            for each_ann in labelme['shapes']: # 遍历所有标注
                
                if each_ann['shape_type'] == 'point': # 筛选出关键点标注
                    # 关键点横纵坐标
                    x = int(each_ann['points'][0][0])
                    y = int(each_ann['points'][0][1])
                    label = each_ann['label']
                    if (x>bbox_left_top_x) & (x<bbox_right_bottom_x) & (y<bbox_right_bottom_y) & (y>bbox_left_top_y): # 筛选出在该个体框中的关键点
                        bbox_keypoints_dict[label] = [x, y]
                        
            bbox_dict['num_keypoints'] = len(bbox_keypoints_dict)
            # print(bbox_keypoints_dict)

            # 把关键点按照类别顺序排好
            bbox_dict['keypoints'] = []
            for each_class in class_list['keypoints']:
                if each_class in bbox_keypoints_dict:
                    bbox_dict['keypoints'].append(bbox_keypoints_dict[each_class][0])
                    bbox_dict['keypoints'].append(bbox_keypoints_dict[each_class][1])
                    bbox_dict['keypoints'].append(2) # 2-可见不遮挡 1-遮挡 0-没有点
                else: # 不存在的点,一律为0
                    bbox_dict['keypoints'].append(0)
                    bbox_dict['keypoints'].append(0)
                    bbox_dict['keypoints'].append(0)
                    
            coco_annotations.append(bbox_dict)
            
    return coco_annotations

# 使用函数处理单个labelme格式的json标注文件
labelme_json_path = 'DSC_0209.json'

with open(labelme_json_path, 'r', encoding='utf-8') as f:
    labelme = json.load(f)
process_single_json(labelme)
# 添加images和annotations
IMG_ID = 0
ANN_ID = 0
# 遍历所有 labelme 格式的 json 文件
for labelme_json in os.listdir(): 
    
    if labelme_json.split('.')[-1] == 'json':
        
        with open(labelme_json, 'r', encoding='utf-8') as f:
            
            labelme = json.load(f)
            
            ## 提取图像元数据
            img_dict = {}
            img_dict['file_name'] = labelme['imagePath']
            img_dict['height'] = labelme['imageHeight']
            img_dict['width'] = labelme['imageWidth']
            img_dict['id'] = IMG_ID
            coco['images'].append(img_dict)
            
            ## 提取框和关键点信息
            coco_annotations = process_single_json(labelme, image_id=IMG_ID)
            coco['annotations'] += coco_annotations
            
            IMG_ID += 1
            
            print(labelme_json, '已处理完毕')

    else:
        pass   
# 保存生成的文件
if not os.path.exists('output_coco'):
    os.mkdir('output_coco')
    print('创建新目录 output_coco')
coco_path = 'output_coco/coco_sample.json'
with open(coco_path, 'w') as f:
    json.dump(coco, f, indent=2)

    
# 验证MS COCO格式的标注

from pycocotools.coco import COCO
my_coco = COCO(coco_path)

2.3.4 labelme2MSCOCO-keypoint-批量转换

目录结构如下:

labelme2MSCOCO-keypoint-单个转换/
├─.ipynb_checkpoints/
│ └─labelme2MSCOCO-keypoint-单个转换-checkpoint.ipynb
├─DSC_0209.jpg
├─DSC_0209.json
├─labelme2MSCOCO-keypoint-单个转换.ipynb
└─output_coco/
  └─coco_sample.json

转换代码如下:

import os
import json

Dataset_root = 'SJB_25_Dataset'
labelme_json_path = Dataset_root+'/labelme_jsons'
class_list = {
    'supercategory': 'sjb_rect',
    'id': 1,
    'name': 'sjb_rect',
    'keypoints': ['angle_30', 'angle_60', 'angle_90'], # 大小写敏感
    'skeleton':[[0,1], [0,2], [1,2]]
}

if not os.path.exists(Dataset_root+'/MSCOCO_labels'):
    os.mkdir(Dataset_root+'/MSCOCO_labels')
if not os.path.exists(Dataset_root+'/MSCOCO_labels/train'):
    os.mkdir(Dataset_root+'/MSCOCO_labels/train')
if not os.path.exists(Dataset_root+'/MSCOCO_labels/val'):
    os.mkdir(Dataset_root+'/MSCOCO_labels/val')

def process_single_json(labelme, image_id=1):
    '''
    输入labelme的json数据,输出coco格式的每个框的关键点标注信息
    '''
    
    global ANN_ID
    
    coco_annotations = []
    
    for each_ann in labelme['shapes']: # 遍历该json文件中的所有标注

        if each_ann['shape_type'] == 'rectangle': # 筛选出个体框

            # 个体框元数据
            bbox_dict = {}
            bbox_dict['category_id'] = 1
            bbox_dict['segmentation'] = []
            
            bbox_dict['iscrowd'] = 0
            bbox_dict['segmentation'] = []
            bbox_dict['image_id'] = image_id
            bbox_dict['id'] = ANN_ID
            # print(ANN_ID)
            ANN_ID += 1

            # 获取个体框坐标
            bbox_left_top_x = min(int(each_ann['points'][0][0]), int(each_ann['points'][1][0]))
            bbox_left_top_y = min(int(each_ann['points'][0][1]), int(each_ann['points'][1][1]))
            bbox_right_bottom_x = max(int(each_ann['points'][0][0]), int(each_ann['points'][1][0]))
            bbox_right_bottom_y = max(int(each_ann['points'][0][1]), int(each_ann['points'][1][1]))
            bbox_w = bbox_right_bottom_x - bbox_left_top_x
            bbox_h = bbox_right_bottom_y - bbox_left_top_y
            bbox_dict['bbox'] = [bbox_left_top_x, bbox_left_top_y, bbox_w, bbox_h] # 左上角x、y、框的w、h
            bbox_dict['area'] = bbox_w * bbox_h
            
            # 筛选出分割多段线
            for each_ann in labelme['shapes']: # 遍历所有标注
                if each_ann['shape_type'] == 'polygon': # 筛选出分割多段线标注
                    # 第一个点的坐标
                    first_x = each_ann['points'][0][0]
                    first_y = each_ann['points'][0][1]
                    if (first_x>bbox_left_top_x) & (first_x<bbox_right_bottom_x) & (first_y<bbox_right_bottom_y) & (first_y>bbox_left_top_y): # 筛选出在该个体框中的关键点
                        bbox_dict['segmentation'] = list(map(lambda x: list(map(lambda y: round(y, 2), x)), each_ann['points'])) # 坐标保留两位小数
                        # bbox_dict['segmentation'] = each_ann['points']

            # 筛选出该个体框中的所有关键点
            bbox_keypoints_dict = {}
            for each_ann in labelme['shapes']: # 遍历所有标注
                
                if each_ann['shape_type'] == 'point': # 筛选出关键点标注
                    # 关键点横纵坐标
                    x = int(each_ann['points'][0][0])
                    y = int(each_ann['points'][0][1])
                    label = each_ann['label']
                    if (x>bbox_left_top_x) & (x<bbox_right_bottom_x) & (y<bbox_right_bottom_y) & (y>bbox_left_top_y): # 筛选出在该个体框中的关键点
                        bbox_keypoints_dict[label] = [x, y]
                        
            bbox_dict['num_keypoints'] = len(bbox_keypoints_dict)
            # print(bbox_keypoints_dict)

            # 把关键点按照类别顺序排好
            bbox_dict['keypoints'] = []
            for each_class in class_list['keypoints']:
                if each_class in bbox_keypoints_dict:
                    bbox_dict['keypoints'].append(bbox_keypoints_dict[each_class][0])
                    bbox_dict['keypoints'].append(bbox_keypoints_dict[each_class][1])
                    bbox_dict['keypoints'].append(2) # 2-可见不遮挡 1-遮挡 0-没有点
                else: # 不存在的点,一律为0
                    bbox_dict['keypoints'].append(0)
                    bbox_dict['keypoints'].append(0)
                    bbox_dict['keypoints'].append(0)
                    
            coco_annotations.append(bbox_dict)
            
    return coco_annotations

def process_folder():
    IMG_ID = 0
    ANN_ID = 0

    # 遍历所有 labelme 格式的 json 文件
    for labelme_json in os.listdir(): 

        if labelme_json.split('.')[-1] == 'json':

            with open(labelme_json, 'r', encoding='utf-8') as f:

                labelme = json.load(f)

                ## 提取图像元数据
                img_dict = {}
                img_dict['file_name'] = labelme['imagePath']
                img_dict['height'] = labelme['imageHeight']
                img_dict['width'] = labelme['imageWidth']
                img_dict['id'] = IMG_ID
                coco['images'].append(img_dict)

                ## 提取框和关键点信息
                coco_annotations = process_single_json(labelme, image_id=IMG_ID)
                coco['annotations'] += coco_annotations

                IMG_ID += 1

                print(labelme_json, '已处理完毕')

        else:
            pass
        
coco = {}
coco['categories'] = []
coco['categories'].append(class_list)
coco['images'] = []
coco['annotations'] = []
IMG_ID = 0
ANN_ID = 0

path = os.path.join(Dataset_root, 'labelme_jsons')
os.chdir(path)
process_folder()
# 保存coco标注文件
coco_path = '../MSCOCO_labels/train/train_coco.json'
with open(coco_path, 'w') as f:
    json.dump(coco, f, indent=2)
    
os.chdir('../../')

参考资料

  1. 同济子豪兄-两天带你搞定关键点检测毕业设计全流程
  2. https://cocodataset.org/#format-data
  3. MS COCO数据集介绍以及pycocotools简单使用
  4. MSCOCO api详解 —— Keypoints
  5. 目标检测数据集MSCOCO详解

你可能感兴趣的:(深度学习,yolo,YOLO,深度学习)