控制基础学习(2)-非线性干扰观测器

文章目录

  • 前言
      • 针对常值干扰的非线性干扰观测
      • 我的问题
      • 参考

前言

学习一下基础

针对常值干扰的非线性干扰观测

对于动力学系统
{ x ˙ = f ( x ) + g 1 ( x ) u + g 2 ( x ) d , if  n  is even y = b ( x ) , if  n  is odd \begin{cases} \dot x=f(x)+g_1(x)u+g_2(x)d, & \text{if $n$ is even} \\ y=b(x), & \text{if $n$ is odd} \\ \end{cases} {x˙=f(x)+g1(x)u+g2(x)d,y=b(x),if n is evenif n is odd
令干扰估计为 d ^ \hat d d^,估计误差为 d ~ = d − d ^ \tilde{d}=d-\hat d d~=dd^

d ~ ˙ = d ˙ − d ^ ˙ = − d ^ ˙ \dot{\tilde{d}}=\dot d-\dot {\hat d}=-\dot {\hat d} d~˙=d˙d^˙=d^˙

为了使 d ~ \tilde{d} d~ 趋于0,我们设计趋近律形式为

d ~ ˙ = − d ^ ˙ = − l ( x ) g 2 ( x ) ( d ~ ) \dot{\tilde{d}}=-\dot {\hat d}=-l(x)g_2(x)(\tilde{d}) d~˙=d^˙=l(x)g2(x)(d~)

通过设计 l ( x ) l(x) l(x)使其收敛到0,将趋近律带入系统方程得:

d ^ ˙ = l ( x ) [ x ˙ − f ( x ) − g 1 ( x ) u − g 2 ( x ) d ^ ] \dot{\hat{d}}=l(x)[\dot x-f(x)-g_1(x)u-g_2(x)\hat d] d^˙=l(x)[x˙f(x)g1(x)ug2(x)d^]

为了避免对状态量的测量,对上式进行改进:
两边同时减去 l ( x ) x ˙ l(x)\dot x l(x)x˙

d ^ ˙ − l ( x ) x ˙ = l ( x ) [ − f ( x ) − g 1 ( x ) u − g 2 ( x ) d ^ ] \dot{\hat{d}}-l(x)\dot x=l(x)[-f(x)-g_1(x)u-g_2(x)\hat d] d^˙l(x)x˙=l(x)[f(x)g1(x)ug2(x)d^]

z = d ^ − p ( x ) , p ( x ) = ∫ l ( x ) x ˙ d t z={\hat{d}}-p(x),p(x)= \int l(x)\dot x dt z=d^p(x)p(x)=l(x)x˙dt ,则有

{ z ˙ = − l ( x ) g 2 ( x ) z − l ( x ) [ g 2 ( x ) p ( x ) + f ( x ) + g 1 ( x ) u ] d ^ = z + p ( x ) , \begin{cases} \dot z = −l(x)g_2(x)z − l(x)[g_2(x)p(x) + f (x) + g_1(x)u] & \\ \hat d = z + p(x), & \\ \end{cases} {z˙=l(x)g2(x)zl(x)[g2(x)p(x)+f(x)+g1(x)u]d^=z+p(x),
由此避免了对 x ˙ \dot x x˙ 的测量

我的问题

(1)非线性干扰观测器的构造假设为干扰为常值,那实际情况中怎么使用呢?在论文中看到也是直接使用这个形式。
奇了怪了呀,论文与博客中证明,虽然构造假设是干扰为常值,但是稳定性条件却是 d ˙ \dot d d˙有界

参考

非线性干扰观测器简介

Mohammadi A, Marquez H J, Tavakoli M. Nonlinear disturbance observers: Design and applications to Euler Lagrange systems[J]. IEEE Control Systems Magazine, 2017, 37(4): 50-72.

Li S, Yang J, Chen W H, et al. Disturbance observer-based control: methods and applications[M]. CRC press, 2014.

你可能感兴趣的:(控制理论,学习)