正态分布应该是概率论和数理统计中最重要的一类概率分布,最早的完整论述是由数学王子高斯提出,高斯主要用来分析观测的误差分析中推导出正态分布。虽然随着概率统计学的发展,自然分布形式多种多样,但是正态分布仍然可以说是最重要的自然分布。
一维正态分布的概率密度函数如下所示:
f ( x ) = 1 σ 2 π e − 1 2 ( x − μ ) 2 σ 2 f(x)=\frac{1}{\sigma \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} f(x)=σ2π1e−21σ2(x−μ)2
上述概率密度图形如下图所示。
正态分布的期望也就是均值如下式所示。
E ( x ) = ∫ − ∞ ∞ x f ( x ) d x = ∫ − ∞ ∞ x ⋅ 1 σ 2 π e − 1 2 ( x − μ ) 2 σ 2 d x = ∫ − ∞ ∞ x − μ σ ⋅ 1 2 π e − 1 2 ( x − μ ) 2 σ 2 d x + ∫ − ∞ ∞ μ σ ⋅ 1 2 π e − 1 2 ( x − μ ) 2 σ 2 d x \begin{aligned} E(x)&=\int _{-\infty}^{\infty} xf(x) dx=\int _{-\infty}^{\infty} x\cdot\frac{1}{\sigma \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx\\ &=\int _{-\infty}^{\infty} \frac{x-\mu}{\sigma}\cdot\frac{1}{ \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx+\int _{-\infty}^{\infty} \frac{\mu}{\sigma}\cdot\frac{1}{ \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx \end{aligned} E(x)=∫−∞∞xf(x)dx=∫−∞∞x⋅σ2π1e−21σ2(x−μ)2dx=∫−∞∞σx−μ⋅2π1e−21σ2(x−μ)2dx+∫−∞∞σμ⋅2π1e−21σ2(x−μ)2dx
第一个积分式中用变量变换 z = x − μ σ z=\frac{x-\mu}{\sigma} z=σx−μ
∫ − ∞ ∞ x − μ σ ⋅ 1 2 π e − 1 2 ( x − μ ) 2 σ 2 d x = ∫ − ∞ ∞ z ⋅ 1 2 π e − 1 2 z 2 σ d z = σ 2 π ∫ − ∞ ∞ z e − 1 2 z 2 d z = σ 2 π ( ∫ − ∞ 0 z e − 1 2 z 2 d z + ∫ 0 ∞ z e − 1 2 z 2 d z ) = σ 2 π ( ∫ − ∞ 0 ( − t ) e − 1 2 ( − t ) 2 d ( − t ) + ∫ 0 ∞ z e − 1 2 z 2 d z ) = σ 2 π ( ∫ ∞ 0 t e − 1 2 t 2 d t + ∫ 0 ∞ z e − 1 2 z 2 d z ) = σ 2 π ( − ∫ 0 ∞ t e − 1 2 t 2 d t + ∫ 0 ∞ z e − 1 2 z 2 d z ) = 0 \begin{aligned} \int _{-\infty}^{\infty} \frac{x-\mu}{\sigma}\cdot\frac{1}{ \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx&=\int _{-\infty}^{\infty} z \cdot\frac{1}{ \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}z^2}\sigma dz\\ &=\frac{\sigma}{ \sqrt {2 \pi}}\int _{-\infty}^{\infty} z \mathbf e^{-\frac{1}{2}z^2} dz\\ &=\frac{\sigma}{ \sqrt {2 \pi}}(\int _{-\infty}^{0} z \mathbf e^{-\frac{1}{2}z^2} dz+\int _{0}^{\infty} z \mathbf e^{-\frac{1}{2}z^2} dz)\\ &=\frac{\sigma}{ \sqrt {2 \pi}}(\int _{-\infty}^{0} (-t) \mathbf e^{-\frac{1}{2}(-t)^2} d(-t)+\int _{0}^{\infty} z \mathbf e^{-\frac{1}{2}z^2} dz)\\ &=\frac{\sigma}{ \sqrt {2 \pi}}(\int _{\infty}^{0} t \mathbf e^{-\frac{1}{2}t^2} dt + \int _{0}^{\infty} z \mathbf e^{-\frac{1}{2}z^2} dz)\\ &=\frac{\sigma}{ \sqrt {2 \pi}}(-\int _{0}^{\infty} t \mathbf e^{-\frac{1}{2}t^2} dt + \int _{0}^{\infty} z \mathbf e^{-\frac{1}{2}z^2} dz)\\ &=0 \end{aligned} ∫−∞∞σx−μ⋅2π1e−21σ2(x−μ)2dx=∫−∞∞z⋅2π1e−21z2σdz=2πσ∫−∞∞ze−21z2dz=2πσ(∫−∞0ze−21z2dz+∫0∞ze−21z2dz)=2πσ(∫−∞0(−t)e−21(−t)2d(−t)+∫0∞ze−21z2dz)=2πσ(∫∞0te−21t2dt+∫0∞ze−21z2dz)=2πσ(−∫0∞te−21t2dt+∫0∞ze−21z2dz)=0
第二个积分式其实就是正态分布的累积函数
∫ − ∞ ∞ μ σ ⋅ 1 2 π e − 1 2 ( x − μ ) 2 σ 2 d x = μ ⋅ ∫ − ∞ ∞ 1 σ 2 π e − 1 2 ( x − μ ) 2 σ 2 d x = μ ⋅ 1 \int _{-\infty}^{\infty} \frac{\mu}{\sigma}\cdot\frac{1}{ \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx=\mu \cdot\int _{-\infty}^{\infty} \frac{1}{\sigma \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx=\mu\cdot1 ∫−∞∞σμ⋅2π1e−21σ2(x−μ)2dx=μ⋅∫−∞∞σ2π1e−21σ2(x−μ)2dx=μ⋅1
因此,
E ( x ) = ∫ − ∞ ∞ x − μ σ ⋅ 1 2 π e − 1 2 ( x − μ ) 2 σ 2 d x + ∫ − ∞ ∞ μ σ ⋅ 1 2 π e − 1 2 ( x − μ ) 2 σ 2 d x = 0 + μ ⋅ 1 = μ \begin{aligned} E(x)&=\int _{-\infty}^{\infty} \frac{x-\mu}{\sigma}\cdot\frac{1}{ \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx+\int _{-\infty}^{\infty} \frac{\mu}{\sigma}\cdot\frac{1}{ \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx\\ &=0+\mu\cdot1\\ &=\mu \end{aligned} E(x)=∫−∞∞σx−μ⋅2π1e−21σ2(x−μ)2dx+∫−∞∞σμ⋅2π1e−21σ2(x−μ)2dx=0+μ⋅1=μ
正态分布的方差如下式所示。
V a r ( x ) = ∫ − ∞ ∞ ( x − E ( x ) ) 2 f ( x ) d x = ∫ − ∞ ∞ ( x − μ ) 2 ⋅ 1 σ 2 π e − 1 2 ( x − μ ) 2 σ 2 d x = ∫ − ∞ ∞ ( x − μ σ ) 2 ⋅ σ ⋅ 1 2 π e − 1 2 ( x − μ ) 2 σ 2 d x \begin{aligned} Var(x)&=\int _{-\infty}^{\infty} (x-E(x))^2f(x) dx=\int _{-\infty}^{\infty} (x-\mu)^2\cdot\frac{1}{\sigma \sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx\\ &=\int _{-\infty}^{\infty} (\frac{x-\mu}{\sigma })^2 \cdot\sigma \cdot\frac{1}{\sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx \end{aligned} Var(x)=∫−∞∞(x−E(x))2f(x)dx=∫−∞∞(x−μ)2⋅σ2π1e−21σ2(x−μ)2dx=∫−∞∞(σx−μ)2⋅σ⋅2π1e−21σ2(x−μ)2dx
对上式使用变量变换 z = x − μ σ z=\frac{x-\mu}{\sigma} z=σx−μ
V a r ( x ) = ∫ − ∞ ∞ ( x − μ σ ) 2 ⋅ σ ⋅ 1 2 π e − 1 2 ( x − μ ) 2 σ 2 d x = ∫ − ∞ ∞ z 2 ⋅ σ 2 π e − 1 2 z 2 σ d z = σ 2 2 π ∫ − ∞ ∞ z 2 ⋅ e − 1 2 z 2 d z \begin{aligned} Var(x)&=\int _{-\infty}^{\infty} (\frac{x-\mu}{\sigma })^2 \cdot\sigma\cdot\frac{1}{\sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}dx\\ &=\int _{-\infty}^{\infty} z^2 \cdot\frac{\sigma}{\sqrt {2 \pi}}\mathbf e^{-\frac{1}{2}z^2}\sigma dz\\ &=\frac{\sigma^2}{\sqrt {2 \pi}}\int _{-\infty}^{\infty} z^2 \cdot\mathbf e^{-\frac{1}{2}z^2} dz \end{aligned} Var(x)=∫−∞∞(σx−μ)2⋅σ⋅2π1e−21σ2(x−μ)2dx=∫−∞∞z2⋅2πσe−21z2σdz=2πσ2∫−∞∞z2⋅e−21z2dz
对上式使用变量变换 t = z 2 t=\frac{z}{\sqrt2} t=2z
V a r ( x ) = σ 2 2 π ∫ − ∞ ∞ z 2 ⋅ e − 1 2 z 2 d z = σ 2 2 π ∫ − ∞ ∞ ( 2 t ) 2 ⋅ e − 1 2 ( 2 t ) 2 d ( 2 t ) = σ 2 2 π ∫ − ∞ ∞ 2 t 2 ⋅ e − t 2 ⋅ 2 d t = 2 σ 2 π ∫ − ∞ ∞ t 2 ⋅ e − t 2 d t = 2 σ 2 π ∫ − ∞ ∞ ( − 1 2 t ) ⋅ d ( e − t 2 ) = 2 σ 2 π [ ( − 1 2 t ) ⋅ e − t 2 ∣ − ∞ + ∞ − ∫ − ∞ ∞ ( e − t 2 ) ⋅ d ( − 1 2 t ) ] \begin{aligned} Var(x) &=\frac{\sigma^2}{\sqrt {2 \pi}}\int _{-\infty}^{\infty} z^2 \cdot\mathbf e^{-\frac{1}{2}z^2} dz\\ &=\frac{\sigma^2}{\sqrt {2 \pi}}\int _{-\infty}^{\infty} (\sqrt2 t)^2 \cdot\mathbf e^{-\frac{1}{2} (\sqrt2 t)^2} d (\sqrt2 t)\\ &=\frac{\sigma^2}{\sqrt {2 \pi}}\int _{-\infty}^{\infty} 2 t^2 \cdot\mathbf e^{- t^2} \cdot \sqrt2 dt\\ &=\frac{2\sigma^2}{\sqrt { \pi}}\int _{-\infty}^{\infty} t^2 \cdot\mathbf e^{- t^2} dt\\ &=\frac{2\sigma^2}{\sqrt { \pi}}\int _{-\infty}^{\infty} (-\frac{1}{2}t) \cdot d(\mathbf e^{- t^2})\\ &=\frac{2\sigma^2}{\sqrt { \pi}}[(-\frac{1}{2}t)\cdot\mathbf e^{- t^2}|_{-\infty}^{+\infty}-\int _{-\infty}^{\infty} (\mathbf e^{- t^2}) \cdot d(-\frac{1}{2}t)] \end{aligned} Var(x)=2πσ2∫−∞∞z2⋅e−21z2dz=2πσ2∫−∞∞(2t)2⋅e−21(2t)2d(2t)=2πσ2∫−∞∞2t2⋅e−t2⋅2dt=π2σ2∫−∞∞t2⋅e−t2dt=π2σ2∫−∞∞(−21t)⋅d(e−t2)=π2σ2[(−21t)⋅e−t2∣−∞+∞−∫−∞∞(e−t2)⋅d(−21t)]
上式中第一项等于零,因为
lim t → − ∞ t ⋅ e − t 2 = lim t → − ∞ t e t 2 = 0 lim t → + ∞ t ⋅ e − t 2 = lim t → + ∞ t e t 2 = 0 \lim_{t\to-\infty} t\cdot\mathbf e^{- t^2}=\lim_{t\to-\infty} \frac{t}{\mathbf e^{t^2}}=0\\ \lim_{t\to+\infty} t\cdot\mathbf e^{- t^2}=\lim_{t\to+\infty} \frac{t}{\mathbf e^{t^2}}=0 t→−∞limt⋅e−t2=t→−∞limet2t=0t→+∞limt⋅e−t2=t→+∞limet2t=0
那么方差就只剩第二项了,这里要用到 ∫ − ∞ ∞ e − t 2 d t = π \int _{-\infty}^{\infty} \mathbf e^{- t^2} dt=\sqrt \pi ∫−∞∞e−t2dt=π,这个方程可以从伽马函数中导出。
V a r ( x ) = 2 σ 2 π ⋅ 1 2 ∫ − ∞ ∞ e − t 2 d t = σ 2 π ∫ − ∞ ∞ e − t 2 d t = σ 2 \begin{aligned} Var(x) &=\frac{2\sigma^2}{\sqrt { \pi}}\cdot\frac{1}{2}\int _{-\infty}^{\infty} \mathbf e^{- t^2} dt\\ &=\frac{\sigma^2}{\sqrt { \pi}}\int _{-\infty}^{\infty} \mathbf e^{- t^2} dt\\ &=\sigma^2 \end{aligned} Var(x)=π2σ2⋅21∫−∞∞e−t2dt=πσ2∫−∞∞e−t2dt=σ2
假设随机变量 X X X服从正态分布, X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) X∼N(μ,σ2),那么随机变量 Y = a X + b Y=aX+b Y=aX+b可由变量变换 X = Y − b a X=\frac{Y-b}{a} X=aY−b来导出,即随机变量 X X X的累积函数为
F ( x ) = ∫ − ∞ x f ( ξ ) d ξ = ∫ − ∞ x 1 σ 2 π e − 1 2 ( ξ − μ ) 2 σ 2 d ξ = ∫ − ∞ y − b a 1 σ 2 π e − 1 2 ( η − b a − μ ) 2 σ 2 d ( η − b a ) = ∫ − ∞ y 1 σ 2 π e − 1 2 ( η − b − a μ ) 2 a 2 σ 2 1 a d η = F ( y ) \begin{aligned} F(x)&=\int_{-\infty}^xf(\xi)d\xi=\int_{-\infty}^x \frac{1}{\sigma\sqrt{2\pi}} \mathbf e^{-\frac{1}{2}\frac{(\xi-\mu)^2}{\sigma^2}}d\xi\\ &=\int_{-\infty}^{\frac{y-b}{a}} \frac{1}{\sigma\sqrt{2\pi}} \mathbf e^{-\frac{1}{2}\frac{(\frac{\eta-b}{a}-\mu)^2}{\sigma^2}}d(\frac{\eta-b}{a})\\ &=\int_{-\infty}^{y} \frac{1}{\sigma\sqrt{2\pi}} \mathbf e^{-\frac{1}{2}\frac{(\eta-b-a\mu)^2}{a^2\sigma^2}}\frac{1}{a}d\eta=F(y) \end{aligned} F(x)=∫−∞xf(ξ)dξ=∫−∞xσ2π1e−21σ2(ξ−μ)2dξ=∫−∞ay−bσ2π1e−21σ2(aη−b−μ)2d(aη−b)=∫−∞yσ2π1e−21a2σ2(η−b−aμ)2a1dη=F(y)
那么随机变量 Y Y Y的概率密度函数为
f ( y ) = d F ( y ) d y = 1 a σ 2 π e − 1 2 ( η − b − a μ ) 2 a 2 σ 2 f(y)=\frac{dF(y)}{dy}=\frac{1}{a\sigma\sqrt{2\pi}} \mathbf e^{-\frac{1}{2}\frac{(\eta-b-a\mu)^2}{a^2\sigma^2}} f(y)=dydF(y)=aσ2π1e−21a2σ2(η−b−aμ)2
那么显然随机变量 Y Y Y也是正态分布的,且 Y ∼ N ( b + a μ , a 2 σ 2 ) Y\sim N(b+a\mu,a^2\sigma^2) Y∼N(b+aμ,a2σ2)。
假设随机变量 X 、 Y X、Y X、Y服从正态分布, X ∼ N ( μ X , σ X 2 ) X\sim N(\mu_X,\sigma_X^2) X∼N(μX,σX2), Y ∼ N ( μ Y , σ Y 2 ) Y\sim N(\mu_Y,\sigma_Y^2) Y∼N(μY,σY2),那么 Z = X + Y Z=X+Y Z=X+Y服从什么分布呢?
我们从 Z Z Z的累积函数定义出发观察,
F Z ( z ) = ∫ − ∞ z f ( Z ) d Z F_Z(z)=\int_{-\infty}^zf(Z)dZ FZ(z)=∫−∞zf(Z)dZ
由 Z = X + Y Z=X+Y Z=X+Y,那么 Z Z Z的累积函数一定也可以表示成(X,Y)联合概率密度的积分形式,并且积分域如下图所示
由二重积分的定义出发,我们可以得到
F Z ( z ) = ∫ − ∞ + ∞ ∫ − ∞ z − x f ( x , y ) d y d x F_Z(z)=\int_{-\infty}^{+\infty} \int_{-\infty}^{z-x} f(x,y)dydx FZ(z)=∫−∞+∞∫−∞z−xf(x,y)dydx
用变量变换 y = υ − x y=\upsilon-x y=υ−x,上式变成
F Z ( z ) = ∫ − ∞ + ∞ ∫ − ∞ z − x f ( x , y ) d y d x = ∫ − ∞ + ∞ ∫ − ∞ z − x f ( x , υ − x ) d ( υ − x ) d x = ∫ − ∞ + ∞ ∫ − ∞ z f ( x , υ − x ) d υ d x \begin{aligned} F_Z(z)&=\int_{-\infty}^{+\infty} \int_{-\infty}^{z-x} f(x,y)dydx=\int_{-\infty}^{+\infty} \int_{-\infty}^{z-x} f(x,\upsilon-x)d(\upsilon-x)dx\\ &=\int_{-\infty}^{+\infty} \int_{-\infty}^{z} f(x,\upsilon-x)d\upsilon dx \end{aligned} FZ(z)=∫−∞+∞∫−∞z−xf(x,y)dydx=∫−∞+∞∫−∞z−xf(x,υ−x)d(υ−x)dx=∫−∞+∞∫−∞zf(x,υ−x)dυdx
那么随机变量 Z Z Z的概率密度函数为
f Z ( z ) = d F Z ( z ) d z = ∫ − ∞ + ∞ f ( x , z − x ) d x f_Z(z)=\frac{dF_Z(z)}{dz}=\int_{-\infty}^{+\infty} f(x,z-x)dx fZ(z)=dzdFZ(z)=∫−∞+∞f(x,z−x)dx
如果随机变量 X 、 Y X、Y X、Y是独立的,那么
f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x = ∫ − ∞ + ∞ 1 σ x 2 π e − ( x − μ x ) 2 2 σ x 2 1 σ y 2 π e − ( z − x − μ y ) 2 2 σ y 2 d x = ∫ − ∞ + ∞ 1 σ x σ y 2 π e − ( z − μ x − μ y ) 2 2 ( σ x 2 + σ y 2 ) − 1 2 ( σ x 2 + σ y 2 σ x 2 ⋅ σ y 2 x + σ x z σ y σ x 2 + σ y 2 + σ y μ x σ x σ x 2 + σ y 2 + σ x μ y σ y σ x 2 + σ y 2 ) 2 d x = 1 σ x σ y 2 π e − ( z − μ x − μ y ) 2 2 ( σ x 2 + σ y 2 ) ∫ − ∞ + ∞ e − 1 2 ( σ x 2 + σ y 2 σ x 2 ⋅ σ y 2 x + σ x z σ y σ x 2 + σ y 2 + σ y μ x σ x σ x 2 + σ y 2 + σ x μ y σ y σ x 2 + σ y 2 ) 2 d x = 1 σ x σ y 2 π e − ( z − μ x − μ y ) 2 2 ( σ x 2 + σ y 2 ) σ x 2 ⋅ σ y 2 σ x 2 + σ y 2 ∫ − ∞ + ∞ e − 1 2 ( σ x 2 + σ y 2 σ x 2 ⋅ σ y 2 x + σ x z σ y σ x 2 + σ y 2 + σ y μ x σ x σ x 2 + σ y 2 + σ x μ y σ y σ x 2 + σ y 2 ) 2 d ( σ x 2 + σ y 2 σ x 2 ⋅ σ y 2 x ) = 1 2 π σ x 2 + σ y 2 e − ( z − μ x − μ y ) 2 2 ( σ x 2 + σ y 2 ) ∫ − ∞ + ∞ e − 1 2 t 2 d t \begin{aligned} f_Z(z)&=\int_{-\infty}^{+\infty} f(x,z-x)dx =\int_{-\infty}^{+\infty} f_X(x)f_Y(z-x)dx\\ &=\int_{-\infty}^{+\infty} \frac{1}{\sigma_x\sqrt {2\pi}}\mathbf e^{-\frac{(x-\mu_x)^2}{2\sigma_x^2}} \frac{1}{\sigma_y\sqrt {2\pi}}\mathbf e^{-\frac{(z-x-\mu_y)^2}{2\sigma_y^2}}dx\\ &=\int_{-\infty}^{+\infty}\frac{1}{\sigma_x\sigma_y 2\pi}\mathbf e^{-\frac{(z-\mu_x-\mu_y)^2}{2(\sigma_x^2+\sigma_y^2)}-\frac{1}{2}(\sqrt\frac{\sigma_x^2+\sigma_y^2}{\sigma_x^2\cdot\sigma_y^2}x+\frac{\sigma_xz}{\sigma_y\sqrt{\sigma_x^2+\sigma_y^2}}+\frac{\sigma_y\mu_x}{\sigma_x\sqrt{\sigma_x^2+\sigma_y^2}}+\frac{\sigma_x\mu_y}{\sigma_y\sqrt{\sigma_x^2+\sigma_y^2}})^2}dx\\ &=\frac{1}{\sigma_x\sigma_y 2\pi}\mathbf e^{-\frac{(z-\mu_x-\mu_y)^2}{2(\sigma_x^2+\sigma_y^2)}} \int_{-\infty}^{+\infty} \mathbf e^{-\frac{1}{2}(\sqrt\frac{\sigma_x^2+\sigma_y^2}{\sigma_x^2\cdot\sigma_y^2}x+\frac{\sigma_xz}{\sigma_y\sqrt{\sigma_x^2+\sigma_y^2}}+\frac{\sigma_y\mu_x}{\sigma_x\sqrt{\sigma_x^2+\sigma_y^2}}+\frac{\sigma_x\mu_y}{\sigma_y\sqrt{\sigma_x^2+\sigma_y^2}})^2}dx\\ &=\frac{1}{\sigma_x\sigma_y 2\pi}\mathbf e^{-\frac{(z-\mu_x-\mu_y)^2}{2(\sigma_x^2+\sigma_y^2)}} \sqrt{\frac{\sigma_x^2\cdot\sigma_y^2}{\sigma_x^2+\sigma_y^2}} \int_{-\infty}^{+\infty} \mathbf e^{-\frac{1}{2}(\sqrt\frac{\sigma_x^2+\sigma_y^2}{\sigma_x^2\cdot\sigma_y^2}x+\frac{\sigma_xz}{\sigma_y\sqrt{\sigma_x^2+\sigma_y^2}}+\frac{\sigma_y\mu_x}{\sigma_x\sqrt{\sigma_x^2+\sigma_y^2}}+\frac{\sigma_x\mu_y}{\sigma_y\sqrt{\sigma_x^2+\sigma_y^2}})^2}d(\sqrt{\frac{\sigma_x^2+\sigma_y^2}{\sigma_x^2\cdot\sigma_y^2}}x)\\ &=\frac{1}{2\pi\sqrt{\sigma_x^2+\sigma_y^2}}\mathbf e^{-\frac{(z-\mu_x-\mu_y)^2}{2(\sigma_x^2+\sigma_y^2)}}\int_{-\infty}^{+\infty}\mathbf e^{-\frac{1}{2}t^2}dt \end{aligned} fZ(z)=∫−∞+∞f(x,z−x)dx=∫−∞+∞fX(x)fY(z−x)dx=∫−∞+∞σx2π1e−2σx2(x−μx)2σy2π1e−2σy2(z−x−μy)2dx=∫−∞+∞σxσy2π1e−2(σx2+σy2)(z−μx−μy)2−21(σx2⋅σy2σx2+σy2x+σyσx2+σy2σxz+σxσx2+σy2σyμx+σyσx2+σy2σxμy)2dx=σxσy2π1e−2(σx2+σy2)(z−μx−μy)2∫−∞+∞e−21(σx2⋅σy2σx2+σy2x+σyσx2+σy2σxz+σxσx2+σy2σyμx+σyσx2+σy2σxμy)2dx=σxσy2π1e−2(σx2+σy2)(z−μx−μy)2σx2+σy2σx2⋅σy2∫−∞+∞e−21(σx2⋅σy2σx2+σy2x+σyσx2+σy2σxz+σxσx2+σy2σyμx+σyσx2+σy2σxμy)2d(σx2⋅σy2σx2+σy2x)=2πσx2+σy21e−2(σx2+σy2)(z−μx−μy)2∫−∞+∞e−21t2dt
这其中
∫ − ∞ + ∞ e − 1 2 t 2 d t = 2 ⋅ ∫ − ∞ + ∞ e − 1 2 t 2 d ( t 2 ) = 2 ⋅ ∫ − ∞ + ∞ e − τ 2 d τ = 2 ⋅ π \int_{-\infty}^{+\infty}\mathbf e^{-\frac{1}{2}t^2}dt=\sqrt2\cdot\int_{-\infty}^{+\infty}\mathbf e^{-\frac{1}{2}t^2}d(\frac{t}{\sqrt2})=\sqrt2\cdot\int_{-\infty}^{+\infty}\mathbf e^{-\tau^2}d\tau=\sqrt2\cdot\sqrt\pi ∫−∞+∞e−21t2dt=2⋅∫−∞+∞e−21t2d(2t)=2⋅∫−∞+∞e−τ2dτ=2⋅π
那么
f Z ( z ) = 1 2 π σ x 2 + σ y 2 e − ( z − μ x − μ y ) 2 2 ( σ x 2 + σ y 2 ) ∫ − ∞ + ∞ e − 1 2 t 2 d t = 1 2 π σ x 2 + σ y 2 e − ( z − μ x − μ y ) 2 2 ( σ x 2 + σ y 2 ) 2 ⋅ π = 1 2 π σ x 2 + σ y 2 e − ( z − μ x − μ y ) 2 2 ( σ x 2 + σ y 2 ) \begin{aligned} f_Z(z)&=\frac{1}{2\pi\sqrt{\sigma_x^2+\sigma_y^2}}\mathbf e^{-\frac{(z-\mu_x-\mu_y)^2}{2(\sigma_x^2+\sigma_y^2)}}\int_{-\infty}^{+\infty}\mathbf e^{-\frac{1}{2}t^2}dt\\ &=\frac{1}{2\pi\sqrt{\sigma_x^2+\sigma_y^2}}\mathbf e^{-\frac{(z-\mu_x-\mu_y)^2}{2(\sigma_x^2+\sigma_y^2)}}\sqrt2\cdot\sqrt\pi\\ &=\frac{1}{\sqrt{2\pi}\sqrt{\sigma_x^2+\sigma_y^2}}\mathbf e^{-\frac{(z-\mu_x-\mu_y)^2}{2(\sigma_x^2+\sigma_y^2)}} \end{aligned} fZ(z)=2πσx2+σy21e−2(σx2+σy2)(z−μx−μy)2∫−∞+∞e−21t2dt=2πσx2+σy21e−2(σx2+σy2)(z−μx−μy)22⋅π=2πσx2+σy21e−2(σx2+σy2)(z−μx−μy)2
不难得出随机变量 Z Z Z也是服从正态分布,并且 Z ∼ N ( μ X + μ Y , σ X 2 + σ Y 2 ) Z\sim N(\mu_X+\mu_Y,\sigma_X^2+\sigma_Y^2) Z∼N(μX+μY,σX2+σY2)。
假设随机变量 X 1 、 X 2 、 . . . 、 X n X_1、X_2、...、X_n X1、X2、...、Xn服从正态分布, X i ∼ N ( μ i , σ i 2 ) X_i\sim N(\mu_i,\sigma_i^2) Xi∼N(μi,σi2),那么 Z = ∑ a i X i Z=\sum a_iX_i Z=∑aiXi服从什么分布呢?
通过a节、b节内容,不难得出随机变量 Z Z Z服从正态分布,且 Z ∼ N ( ∑ a i μ i , ∑ a i 2 σ i 2 ) Z\sim N(\sum a_i\mu_i,\sum a_i^2\sigma_i^2) Z∼N(∑aiμi,∑ai2σi2)。