Codeforces 786B 线段树优化建图 + Dijkstra

题意

传送门 Codeforces 786B Legacy

题解

建两颗线段树 o t r , i t r otr,itr otr,itr,分别代表出点与入点。首先,对于 [ 0 , n ) [0,n) [0,n) 各点,从其入点向出点连一条边权为 0 0 0 的边。接着 o t r otr otr 上子节点向父节点连一条边权为 0 0 0 的边, i t r itr itr 上父节点向子节点连一条边权为 0 0 0 的边。

对于各个操作,以 v → [ l , r ] v\rightarrow [l,r] v[l,r] 为例,从 v v v o t r otr otr 上的编号,向 [ l , r ] [l,r] [l,r] i t r itr itr 上的编号对应的节点连边,后者对应的节点数为 O ( log ⁡ n ) O(\log n) O(logn)。总节点数为 O ( n + q log ⁡ n ) O(n+q\log n) O(n+qlogn)。以 s s s 的入点为起点跑 D i j k s t r a Dijkstra Dijkstra 即可。

#include 
using namespace std;
#define pb push_back
typedef long long ll;
typedef pair<ll, int> pii;
const int MAXN = 1E5 + 5, SZ = 1 << 18;
const ll INF = 0x3f3f3f3f3f3f3f3f;
int N, Q, S;
int in[MAXN], out[MAXN];
struct edge
{
    int to, cost;
};
vector<edge> G[SZ << 1];

void add_edge(int u, int v, int w) { G[u].pb({v, w}); }

struct ST
{
    int bs;
    void set(int b) { bs = b; }
    void init(int k = 0, int l = 0, int r = N)
    {
        if (r - l == 1)
        {
            k += bs;
            bs == 0 ? out[l] = k : in[l] = k;
            return;
        }
        int m = (l + r) / 2, chl = k * 2 + 1, chr = k * 2 + 2;
        init(chl, l, m), init(chr, m, r);
        k += bs, chl += bs, chr += bs;
        if (bs == 0)
            add_edge(chl, k, 0), add_edge(chr, k, 0);
        else
            add_edge(k, chl, 0), add_edge(k, chr, 0);
    }
    void change(int a, int b, int v, int w, int k = 0, int l = 0, int r = N)
    {
        if (r <= a || b <= l)
            return;
        if (a <= l && r <= b)
        {
            k += bs;
            bs == 0 ? add_edge(k, in[v], w) : add_edge(out[v], k, w);
            return;
        }
        int m = (l + r) / 2, chl = k * 2 + 1, chr = k * 2 + 2;
        change(a, b, v, w, chl, l, m), change(a, b, v, w, chr, m, r);
    }
} itr, otr;

ll ds[SZ << 1];
bool used[SZ << 1];

void dijkstra(int s)
{
    memset(ds, 0x3f, sizeof(ds));
    memset(used, 0, sizeof(used));
    ds[s] = 0;
    priority_queue<pii, vector<pii>, greater<pii>> q;
    q.push({0, s});
    while (q.size())
    {
        int v = q.top().second;
        q.pop();
        if (used[v])
            continue;
        used[v] = 1;
        for (auto &e : G[v])
        {
            ll d = ds[v] + e.cost;
            if (d < ds[e.to])
                ds[e.to] = d, q.push({d, e.to});
        }
    }
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> N >> Q >> S;
    --S;
    itr.set(SZ), otr.set(0);
    itr.init(), otr.init();
    for (int v = 0; v < N; ++v)
        add_edge(in[v], out[v], 0);
    for (int i = 0; i < Q; ++i)
    {
        int op;
        cin >> op;
        if (op == 1)
        {
            int u, v, w;
            cin >> u >> v >> w;
            --u, --v;
            add_edge(out[u], in[v], w);
        }
        else
        {
            int v, l, r, w;
            cin >> v >> l >> r >> w;
            --v, --l;
            op == 2 ? itr.change(l, r, v, w) : otr.change(l, r, v, w);
        }
    }
    dijkstra(in[S]);
    for (int v = 0; v < N; ++v)
        cout << (ds[in[v]] == INF ? -1 : ds[in[v]]) << (v + 1 == N ? '\n' : ' ');
    return 0;
}

你可能感兴趣的:(数据结构,图论,算法)