- PenGymy论文阅读
亚里士多没有德775
论文阅读
这里发现idea被人家先发了,没办法,资料收集的不够全面,现在来学习一下这个项目这篇论文的贡献如下:总的来说,他的主要工作是构建逼真的仿真环境,然后根据这个仿真环境生成真实的靶场,使得这个智能体能够在这个真实的环境去互动。下面来逐渐解析他的工作,我尽量详细一点1、背景和动机这种项目是在网络攻防中,攻防双方攻击者处于暗面,防御者处于明面,这时候受到攻击后应急处理多少会造成损失,那么要是可以提前预测攻
- 10 个免费的 AI 图片生成工具分享
程序员
原文:https://openaigptguide.com/ai-picture-generator/在人工智能(AI)图像生成技术的推动下,各类AI图片生成网站如雨后春笋般涌现,为我们的日常生活提供了丰富多彩的视觉体验。AI图片生成技术原理人工智能(AI)图片生成技术原理是通过计算机程序使用深度学习算法从大量的数据中学习特征,并根据特征创建新的图片。该技术可以模拟人类的绘画过程,学习输入图像的潜
- 假新闻检测论文(24)A comprehensive survey of multimodal fake news detection techniques...
weixin_41964296
假新闻检测自然语言处理
本文综述了利用深度学习架构和注意力机制进行假新闻检测的最新和全面的研究一介绍假新闻定义:虚假或误导性新闻,或“假新闻”,是任何捏造或故意欺骗的媒体内容。假新闻危害:它可以被利用来操纵公众情绪,传播错误信息,甚至干预政治选举。它的主要目的是扭曲、欺骗或操纵个人的信仰和观点。假新闻的形式(类型):虚假信息在媒体上传播的形式多种多样,包括讽刺、谣言、点击诱饵、错误信息等。讽刺作品通常充满幽默,用来强调特
- YOLOv8重磅升级:引入DenseOne密集网络革新主干设计,重塑YOLO目标检测性能新高度
程序员杨弋
YOLO目标检测人工智能
随着深度学习技术的不断进步,目标检测作为计算机视觉领域的重要任务之一,其性能和应用范围也在不断扩大。作为目标检测领域的佼佼者,YOLO(YouOnlyLookOnce)系列算法以其出色的性能和实时性受到了广泛关注。而最近提出的YOLOv8更是在前代版本的基础上进行了多项优化,进一步提升了检测精度和速度。然而,尽管YOLOv8已经取得了显著的进步,但在处理复杂场景和遮挡问题时,仍然存在一定的挑战。为
- 深度学习驱动的极端天气预测:时空数据异常检测与应用全解析(基于Python + TensorFlow)
AI_DL_CODE
深度学习pythontensorflow人工智能天气预测
摘要:时空数据异常检测在气象领域识别偏离正常模式的数据点,对极端天气预测至关重要。深度学习,尤其是LSTM网络,因其强大的特征学习能力在该领域显示出巨大潜力。通过整合多源气象数据,深度学习模型能够自动挖掘复杂模式和非线性关系,提高预测准确性。然而,挑战依然存在,包括数据质量问题、模型可解释性不足以及极端天气的内在复杂性和不确定性。未来,通过模型架构创新、训练算法优化以及探索深度学习在气候预测、气象
- 【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLO大师
YOLO网络cnn目标检测论文阅读yolov8
YOLOv8目标检测创新改进与实战案例专栏专栏目录:YOLOv8有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv8基础解析+创新改进+实战案例介绍摘要视觉识别的“咆哮20年代”开始于视觉Transformer(ViTs)的引入,ViTs迅速取代了卷积神经网络(ConvNets)成为最先进的图像分类模型。然而,普通的ViT在应用于诸
- 基于深度学习的人脸表情识别系统:YOLOv5 + YOLOv8 + YOLOv10 + UI界面 + 数据集
2025年数学建模美赛
深度学习YOLOui分类人工智能
引言随着人工智能的飞速发展,深度学习技术已广泛应用于各个领域,尤其是在计算机视觉领域。人脸识别和表情识别是其中的一个重要应用,能够在多种场景下提供重要的信息,例如安全监控、情感分析、智能客服、健康监测等。在人脸表情识别任务中,准确识别人脸的情感状态(如高兴、愤怒、悲伤等)是一个极具挑战性的任务。随着YOLO系列算法的不断进步,YOLOv5、YOLOv8和YOLOv10的推出大大提高了目标检测的精度
- 基于YOLOv8深度学习的人脸年龄检测识别系统
2025年数学建模美赛
YOLO深度学习人工智能ui数据挖掘分类
引言随着人工智能和计算机视觉的飞速发展,人脸分析技术在年龄检测领域取得了显著进展。人脸年龄检测系统在安全监控、广告推荐、健康监测等领域有广泛应用。本文将基于YOLOv8目标检测模型和UI界面,开发一个完整的人脸年龄检测识别系统。我们将详细介绍项目的技术实现、数据集构建、模型训练以及UI设计,并附上完整代码。目录引言系统架构设计数据准备公开人脸年龄数据集数据标注格式数据目录结构模型训练YOLOv8环
- 基于深度学习的人脸表情识别系统(YOLOv10+UI界面+数据集)
2025年数学建模美赛
深度学习YOLOui计算机视觉人工智能目标跟踪
在本篇博客中,我们将详细介绍如何构建一个基于深度学习的人脸表情识别系统。该系统主要由三部分组成:YOLOv10(深度学习模型)进行表情识别、UI界面展示识别结果以及数据集的准备和训练过程。我们将从系统架构、数据准备、模型训练、UI设计等多个方面进行全面讲解,最终实现一个能够实时识别并展示人脸表情的系统。目录1.系统架构2.数据集准备2.1FER2013数据集2.2数据预处理3.YOLOv10模型概
- 基于深度学习的人脸表情识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能代码
1.引言近年来,人脸表情识别在情感计算、智能人机交互、心理学研究等领域有着广泛的应用。深度学习的快速发展,使得高效、准确的人脸表情识别成为可能。通过利用卷积神经网络(CNN)和目标检测技术,可以实现实时、精准的人脸表情识别。本文将基于YOLOv8构建一个完整的人脸表情识别系统。系统集成了数据集准备、YOLOv8模型训练、实时推理以及基于PyQt5的图形用户界面(UI)。通过本文,你将学习如何实现一
- AI大模型应用架构(ALLMA)白皮书解读
百度_开发者中心
人工智能大模型数据库自然语言处理
随着人工智能技术的不断发展,AI大模型成为推动生产、生活方式变革,助推产业智能化转型升级,驱动数字经济高质量发展等社会经济发展方面的新引擎。为了全面展示AI大模型的发展全貌,为各界提供新思路,本文将对AI大模型应用架构(ALLMA)白皮书进行解读。一、AI大模型应用架构(ALLMA)的内涵AI大模型应用架构(ALLMA)是一种基于深度学习的人工智能应用架构,旨在通过大规模无标注数据预训练、指令微调
- Web APP 阶段性综述
预测模型的开发与应用研究
APPconstructionwebapp
WebAPP阶段性综述当前,WebAPP主要应用于电脑端,常被用于部署数据分析、机器学习及深度学习等高算力需求的任务。在医学与生物信息学领域,WebAPP扮演着重要角色。在生物信息学领域,诸多工具以WebAPP的形式呈现,相较之下,医学领域的此类应用数量相对较少。在医学和生物信息学的学术论文中,WebAPP是展示研究成果的有效工具,并且还能部署到网络上,服务于实际应用场景。ShinyAPP平台特性
- 如何确保热点产品查询延迟控制在10ms以内?思维导图 代码示例(java 架构)
用心去追梦
java架构开发语言
为了确保热点产品查询的延迟控制在10ms以内,可以采取一系列优化措施和技术手段。以下是一个思维导图的结构和一个简化的Java架构代码示例,用于展示如何实现这一目标。思维导图结构低延迟查询数据预加载热点数据预测提前加载到内存缓存使用高性能缓存内存级缓存(如Caffeine)分布式缓存(如Redis)缓存一致性管理弱一致性模型缓存更新策略(写后失效、读时更新等)并发处理多线程/异步编程线程池管理数据库
- 气象海洋水文领域Python机器学习及深度学习实践应用能力提升
AAIshangyanxiu
农林生态遥感编程算法统计语言大气科学python机器学习深度学习
Python是功能强大、免费、开源,实现面向对象的编程语言,能够在不同操作系统和平台使用,简洁的语法和解释性语言使其成为理想的脚本语言。除了标准库,还有丰富的第三方库,Python在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能。上述优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为气象、海洋和水文
- 【昇思25天学习打卡营打卡指南-第一天】基本介绍与快速入门
JeffDingAI
MindSpore学习
昇思MindSpore介绍昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。昇思MindSpore总体架构如下图所示:ModelZoo(模型库):ModelZoo提供可用的深度学习算法网络,也欢迎更多开发者贡献新
- NLP-语义解析(Text2SQL):技术路线【Seq2Seq、模板槽位填充、中间表达、强化学习、图网络】
u013250861
#自然语言处理人工智能
目前关于NL2SQL技术路线的发展主要包含以下几种:Seq2Seq方法:在深度学习的研究背景下,很多研究人员将Text-to-SQL看作一个类似神经机器翻译的任务,主要采取Seq2Seq的模型框架。基线模型Seq2Seq在加入Attention、Copying等机制后,能够在ATIS、GeoQuery数据集上达到84%的精确匹配,但是在WikiSQL数据集上只能达到23.3%的精确匹配,37.0%
- PyTorch 中的 expand 操作详解:用法、原理与技巧
专业发呆业余科研
深度模型底层原理pytorch人工智能python深度学习机器学习
在使用PyTorch进行深度学习时,张量形状与广播机制常常是让初学者感到困惑的地方。我们需要时常面对多维张量,并在批量、通道、空间位置等多个维度之间做运算。如果能熟练掌握各种维度变换操作——包括unsqueeze、expand、view/reshape、transpose/permute等,可以帮助我们灵活地操纵张量,写出高效而简洁的矩阵化(vectorized)代码。本文将重点聚焦于expand
- 注意力池化层:从概念到实现及应用
专业发呆业余科研
深度模型底层原理python人工智能transformer深度学习自然语言处理图像处理
引言在现代深度学习模型中,注意力机制已经成为一个不可或缺的组件,特别是在处理自然语言和视觉数据时。多头注意力机制(MultiheadAttention)是Transformer模型的核心,它通过多个注意力头来捕捉序列中不同部分之间的关系。然而,在多模态模型中,如何有效地将图像特征和文本特征结合起来一直是一个挑战。注意力池化层(AttentionPoolingLayer)提供了一种有效的解决方案,通
- 深入解析昇腾AI CPU算子开发:基于AI CPU引擎的自定义算子实现与优化
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析昇腾AICPU算子开发:基于AICPU引擎的自定义算子实现与优化随着深度学习模型复杂性的不断提升,AI处理器需要更强大的算力和更高效的计算架构来支撑模型的训练和推理。在华为昇腾AI处理器的架构中,AICPU承担着重要的计算任务,特别是针对标量和向量等通用计算的支持。AICPU算子开发成为开发者优化模型性能的重要步骤,而TBE(TensorBoostEngine)工具也为开发者提供了便捷的算
- 【AI系统】混合并行
ZOMI酱
人工智能
混合并行混合并行(HybridParallel)是一种用于分布式计算的高级策略,它结合了数据并行和模型并行的优势,以更高效地利用计算资源,解决深度学习中的大模型训练问题。混合并行不仅能提高计算效率,还能在有限的硬件资源下处理更大的模型和数据集。在深度学习中,数据并行和模型并行各自有其适用的场景和局限性。数据并行适用于训练样本较多而模型较小的情况,通过将数据集分割成多个子集并在不同的设备上同时训练来
- BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
人工智能机器学习分布式阿里云
近年来,随着深度学习技术的迅猛发展,越来越多的模型展现出动态特性,这引发了对动态形状深度学习编译器(DynamicShapeAICompiler)的广泛关注。本文将介绍阿里云PAI团队近期发布的BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:DynamicShape场景下显存优化的背景与挑战BladeDISC++的创新解决方案Llama2模
- 【TVM 教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在ifname=="__main__":代码块中。importosi
- 交叉熵损失与二元交叉熵损失:区别、联系及实现细节
专业发呆业余科研
深度模型底层原理人工智能深度学习python
在机器学习和深度学习中,交叉熵损失(Cross-EntropyLoss)和二元交叉熵损失(BinaryCross-EntropyLoss)是两种常用的损失函数,它们在分类任务中发挥着重要作用。本文将详细介绍这两种损失函数的区别和联系,并通过具体的代码示例来说明它们的实现细节。交叉熵损失(Cross-EntropyLoss)常用于多类分类问题,即每个样本只能属于一个类别,但总类别数量较多。例如,在手
- 深度学习YOLOv3压双黄线期末项目
yzx991013
giitYOLO
一、引言实现功能目录一、引言实现功能打开视频连续检测车辆能检测到道路中间的双黄线能检测出车辆是否压双黄线当车辆压到双黄线时给出提示要求使用多线程实现功能二、技术栈概览三、代码功能深度剖析视频文件选择功能(choosevideo函数)四、项目亮点提炼五、总结与展望1.打开视频2.连续检测车辆3.能检测到道路中间的双黄线4.能检测出车辆是否压双黄线5.当车辆压到双黄线时给出提示6.要求使用多线程实现功
- 深度定制:Embedding与Reranker模型的微调艺术
从零开始学习人工智能
embedding人工智能
微调是深度学习中的一种常见做法,它允许模型在预训练的基础上进一步学习特定任务的特定特征。对于Embedding模型,微调的目的是让模型更适配特定的数据集,从而取得更好的召回效果。这通常涉及到使用特定的数据集对模型进行额外的训练,以便模型能够学习到数据集中的特定语义关系。微调过程可以使用不同的库和框架来实现,例如sentence-transformers库,它提供了便捷的API来调整Embeddin
- 3D卷积神经网络:原理、应用与深入解析
从零开始学习人工智能
cnn人工智能神经网络目标跟踪3dopencv
3D卷积原理3D卷积,或称为三维卷积,是卷积神经网络(CNN)中的一种技术,用于处理三维数据,如医学图像(如MRI、CT扫描)或视频数据。与标准的二维卷积(处理图像)不同,3D卷积在三个维度(通常是深度、高度和宽度)上操作。在这个图示中,我们可以看到一个3x3x3的卷积核(也称为滤波器或特征检测器)在一个5x5x5的输入数据块上滑动。在每个位置,卷积核与其覆盖的输入数据块的部分进行元素乘法并求和,
- 【机器学习】—时序数据分析:机器学习与深度学习在预测、金融、气象等领域的应用
云边有个稻草人
热门文章机器学习数据分析深度学习笔记
云边有个稻草人-CSDN博客目录引言1.时序数据分析基础1.1时序数据的特点1.2时序数据分析的常见方法2.深度学习与时序数据分析2.1深度学习在时序数据分析中的应用2.1.1LSTM(长短期记忆网络)2.2深度学习在金融市场预测中的应用2.2.1股票市场预测2.3深度学习在设备故障检测中的应用3.强化学习与时序数据分析3.1强化学习的基本概念3.2强化学习在金融市场中的应用3.3强化学习在设备故
- 使用 AI 在医疗影像分析中的应用探索
摘要医疗影像分析是AI在医疗领域的重要应用方向,能够提高诊断效率,减少误诊率。本文将深入探讨AI技术在医疗影像数据分析中的应用,包括核心算法、关键实现步骤和实际案例,并提供一个基于卷积神经网络(CNN)的图像分类Demo。引言随着医疗影像数据的爆炸式增长,传统的人工分析已无法满足高效、精准诊断的需求。AI技术通过深度学习算法,在医疗影像的识别、分类和标注中发挥了重要作用。本文章将结合技术实现与案例
- 【机器学习】---神经架构搜索(NAS)
Undoom
机器学习Python机器学习架构人工智能python
这里写目录标题引言1.什么是神经架构搜索(NAS)1.1为什么需要NAS?2.NAS的三大组件2.1搜索空间搜索空间设计的考虑因素:2.2搜索策略2.3性能估计3.NAS的主要方法3.1基于强化学习的NAS3.2基于进化算法的NAS3.3基于梯度的NAS4.NAS的应用5.实现一个简单的NAS框架6.总结引言随着深度学习的成功应用,神经网络架构的设计变得越来越复杂。模型的性能不仅依赖于数据和训练方
- Pytorch实现猫狗分类
NoKnowovo
Pythonpytorch分类人工智能
在进行编码之前,确保已经安装好Pytorch以及相关依赖环境模型定义构建构建一个较为简单的卷积神经网络模型#定义神经网络模型classCatDogClassifier(nn.Module):def__init__(self):super(CatDogClassifier,self).__init__()self.conv1=nn.Conv2d(3,16,kernel_size=5,stride=1
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓