Arrow parquet Read

arrow/cpp/src/parquet/arrow/reader.cc

RowGroupRecordBatchReader

class RowGroupRecordBatchReader : public ::arrow::RecordBatchReader {
 public:
  RowGroupRecordBatchReader(::arrow::RecordBatchIterator batches,
                            std::shared_ptr<::arrow::Schema> schema)
      : batches_(std::move(batches)), schema_(std::move(schema)) {}

  ~RowGroupRecordBatchReader() override {}

  Status ReadNext(std::shared_ptr<::arrow::RecordBatch>* out) override {
    return batches_.Next().Value(out);
  }

  std::shared_ptr<::arrow::Schema> schema() const override { return schema_; }

 private:
  ::arrow::Iterator> batches_;
  std::shared_ptr<::arrow::Schema> schema_;
};

GetRecordBatchReader

https://github.com/apache/arrow/blob/61c15ed2f2ba1f77650de1eebace10f32cf5a695/cpp/src/parquet/arrow/reader.cc#L950

Status FileReaderImpl::GetRecordBatchReader(const std::vector& row_groups,
                                            const std::vector& column_indices,
                                            std::unique_ptr* out) {
  RETURN_NOT_OK(BoundsCheck(row_groups, column_indices));

  if (reader_properties_.pre_buffer()) {
    // PARQUET-1698/PARQUET-1820: pre-buffer row groups/column chunks if enabled
    BEGIN_PARQUET_CATCH_EXCEPTIONS
    reader_->PreBuffer(row_groups, column_indices, reader_properties_.io_context(),
                       reader_properties_.cache_options());
    END_PARQUET_CATCH_EXCEPTIONS
  }

  std::vector> readers;
  std::shared_ptr<::arrow::Schema> batch_schema;
  RETURN_NOT_OK(GetFieldReaders(column_indices, row_groups, &readers, &batch_schema));

  if (readers.empty()) {
    // Just generate all batches right now; they're cheap since they have no columns.
    int64_t batch_size = properties().batch_size();
    auto max_sized_batch =
        ::arrow::RecordBatch::Make(batch_schema, batch_size, ::arrow::ArrayVector{});

    ::arrow::RecordBatchVector batches;

    for (int row_group : row_groups) {
      int64_t num_rows = parquet_reader()->metadata()->RowGroup(row_group)->num_rows();

      batches.insert(batches.end(), num_rows / batch_size, max_sized_batch);

      if (int64_t trailing_rows = num_rows % batch_size) {
        batches.push_back(max_sized_batch->Slice(0, trailing_rows));
      }
    }

    *out = ::arrow::internal::make_unique(
        ::arrow::MakeVectorIterator(std::move(batches)), std::move(batch_schema));

    return Status::OK();
  }

  int64_t num_rows = 0;
  for (int row_group : row_groups) {
    num_rows += parquet_reader()->metadata()->RowGroup(row_group)->num_rows();
  }

  using ::arrow::RecordBatchIterator;

  // NB: This lambda will be invoked outside the scope of this call to
  // `GetRecordBatchReader()`, so it must capture `readers` and `batch_schema` by value.
  // `this` is a non-owning pointer so we are relying on the parent FileReader outliving
  // this RecordBatchReader.
  ::arrow::Iterator batches = ::arrow::MakeFunctionIterator(
      [readers, batch_schema, num_rows,
       this]() mutable -> ::arrow::Result {
        ::arrow::ChunkedArrayVector columns(readers.size());

        // don't reserve more rows than necessary
        int64_t batch_size = std::min(properties().batch_size(), num_rows);
        num_rows -= batch_size;

        RETURN_NOT_OK(::arrow::internal::OptionalParallelFor(
            reader_properties_.use_threads(), static_cast(readers.size()),
            [&](int i) { return readers[i]->NextBatch(batch_size, &columns[i]); }));

        for (const auto& column : columns) {
          if (column == nullptr || column->length() == 0) {
            return ::arrow::IterationTraits::End();
          }
        }

        auto table = ::arrow::Table::Make(batch_schema, std::move(columns));
        auto table_reader = std::make_shared<::arrow::TableBatchReader>(*table);

        // NB: explicitly preserve table so that table_reader doesn't outlive it
        return ::arrow::MakeFunctionIterator(
            [table, table_reader] { return table_reader->Next(); });
      });

  *out = ::arrow::internal::make_unique(
      ::arrow::MakeFlattenIterator(std::move(batches)), std::move(batch_schema));

  return Status::OK();
}

你可能感兴趣的:(云计算,1024程序员节,c++,开发语言)