导航:
【Java笔记+踩坑汇总】Java基础+进阶+JavaWeb+SSM+SpringBoot+瑞吉外卖+SpringCloud+黑马旅游+谷粒商城+学成在线+MySQL高级篇+设计模式+牛客面试题
目录
8. 优先考虑覆盖索引
8.1 什么是覆盖索引?
8.1.0 概念
8.0.1 覆盖索引情况下,“不等于”索引生效
8.0.2 覆盖索引情况下,左模糊查询索引生效
8.2 覆盖索引的利弊
9. 给字符串添加索引
9.1 前缀索引
9.2 前缀索引不能用覆盖索引
10. 索引下推
10.1 介绍
10.2 ICP的使用条件
10.3 ICP的开启/关闭
10.4 ICP使用案例
10.5 开启和关闭ICP性能对比
11. 普通索引 vs 唯一索引
11.1 查询性能近似
11.2 普通索引更新性能更高,change buffer
11.3 change buffer的使用场景
12. SQL优化
12.1 EXISTS 和 IN 的区分
12.2 建议COUNT(*)或COUNT(1)
12.3 建议SELECT(字段)而不是SELECT(*)
12.4 LIMIT 1 对优化的影响
12.5 多使用COMMIT
13. 主键设计思路
13.1 自增主键的缺点
13.2 业务字段尽量不要做主键
13.3 淘宝订单号的主键设计
13.4 推荐的主键设计
13.4.1 核心与非核心业务主键策略选择
13.4.2 UUID的特点
13.4.3 MySQL 8.0主键方案:有序UUID
13.4.4 MySQL8.0之前主键方案:手动赋值
覆盖索引:一个索引包含了满足查询结果的数据就叫做覆盖索引,不需要回表等操作。
索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。
覆盖索引是非聚簇索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列 (即建索引的字段正好是覆盖查询条件中所涉及的字段)。简单说就是, 索引列+主键 包含 SELECT 到 FROM之间查询的列 。
没覆盖索引情况下,“不等于”索引失效:
没覆盖索引的情况下,使用“不等于”导致索引失效。因为如果使用索引,则需要依次遍历非聚簇索引B+树里所有叶节点,时间复杂度O(n),找到记录后还要回表,加在一起效率不如全表扫描,所以查询优化器就选择全表扫描了。
CREATE INDEX idx_age_name ON student(age, NAME);
#查所有字段,并且使用“不等于”,索引失效
EXPLAIN SELECT * FROM student WHERE age <> 20;
覆盖索引情况下,“不等于”索引生效:
覆盖索引,查的两个字段被联合索引给覆盖了,性能更高。虽然还是需要依次遍历非聚簇索引B+树里所有叶节点,时间复杂度O(n),但是不需要回表了,整体效率比不用索引更高,查询优化器就又使用索引了。
CREATE INDEX idx_age_name ON student(age, NAME);
#查的两个字段正好被联合索引“idx_age_name ”覆盖了,索引成功
EXPLAIN SELECT age,name FROM student WHERE age <> 20;
没覆盖索引的情况下,左模糊查询导致索引失效
#没覆盖索引的情况下,左模糊查询导致索引失效
CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc';
覆盖索引情况下,左模糊查询索引生效
主要原因也是因为走非聚簇索引B+树遍历叶节点,不回表,效率会比全表扫描时高,查询优化器选择效率高的方案。
#有覆盖索引的情况下,左模糊查询索引生效
CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT id,age,NAME FROM student WHERE NAME LIKE '%abc';
上述都使用到了声明的索引,下面的情况则不然,查询列依然多了classId,结果是未使用到索引:
CREATE INDEX idx_age_name ON student(age, NAME); EXPLAIN SELECT id,age,NAME,classId FROM student WHERE NAME LIKE '%abc';
好处:
1.避免回表(Innodb表进行索引的二次查询)
Innodb是以聚集索引的顺序来存储的,对于lnnodb来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据,在查找到相应的键值后,还需通过主键进行二次查询才能获取我们真实所需要的数据。
在覆盖索引中,二级索引的键值中可以获取所要的数据,避免了对主键的二次查询 ,减少了IO操作,提升了查询效率。
2.可以把随机IO变成顺序IO加快查询效率
由于覆盖索引是按键值的顺序存储的,对于IO密集型的范围查找来说,对比随机从磁盘读取每一行的数据I0要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的IO 转变成索引查找的 顺序IO。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
弊端:
具体问题要具体分析:
索引字段的维护总是有代价的。因此,在建立几余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作。
有一张教师表,表定义如下:
create table teacher( ID bigint unsigned primary key, email varchar(64), ... )engine=innodb;
讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
mysql> select col1, col2 from teacher where email='xxx';
如果email这个字段上没有索引,那么这个语句就只能做 全表扫描 。
MySQL是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。
mysql> alter table teacher add index index1(email);
#或
mysql> alter table teacher add index index2(email(6));
这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图。
以及
如果使用的是index1(索引包含整个字符串),执行顺序是这样的:
这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。
如果使用的是index2(索引包含字符串前缀email(6)),执行顺序是这样的:
也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。前面 已经讲过区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。
因为非聚簇索引树查到的数据是前缀和id,前缀不是完整数据,必须要回表到聚簇索引树。
所以使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。
索引下推(ICP,Index Condition Pushdown)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。
如果没有ICP ,存储引擎会遍历索引以定位基表中的行,并将它们返回给 MySQL 服务器,由 MySQL 服务器评古WHERE 后面的条件是否保留行。
启用ICP 后,如果部分 WHERE 条件可以仅使用索引中的列进行筛选,则MySQL 服务器会把这部分WHERE 条件放到存储引擎筛选。然后,存储引擎通过使用索引条目来筛选数据,并且只有在满足这一条件时才从表中读取行。好处: ICP可以减少存储引擎必须访问基表的次数和MySQL服务器必须访问存储引擎的次数。但是,ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 的数据的比例。
举例:
不支持索引下推的联合索引:例如索引(name,age),查询name like 'z%' and age=?,模糊查询导致age无序。在联合索引树查询时只会查name,后面的age乱序不能直接进行条件判断,必须回表后再判断age。
而支持索引下推的联合索引:例如索引(name,age),查询name like 'z%' and age and address,在联合索引树查询时不止查name,还会判断后面的age,过滤后再回表判断address。
CREATE INDEX idx_name_age ON student(name,age);
#索引失败;非覆盖索引时,左模糊导致索引失效
EXPLAIN SELECT * FROM student WHERE name like '%bc%' AND age=30;
#索引成功;MySQL5.6引入索引下推,where后面的name和age都在联合索引里,可以又过滤又索引,不用回表,索引生效
EXPLAIN SELECT * FROM student WHERE `name` like 'bc%' AND age=30;
#索引成功;name走索引,age用到索引下推过滤,classid不在联合索引里,需要回表。
EXPLAIN SELECT * FROM student WHERE `name` like 'bc%' AND age=30 AND classid=2;
好处: 某些场景下ICP可以大大减少回表次数,提高性能。ICP可以减少存储引擎必须访问基表的次数和MySQL服务器必须访问存储引擎的次数。但是,ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 的数据的比例。
# 打开索引下推
SET optimizer_switch = 'index_condition_pushdown=on';
# 关闭索引下推
SET optimizer_switch = 'index_condition_pushdown=off';
二级索引zip_last_first (简图,这里省略了数据页等信息)
从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。
这个表的建表语句是:
mysql> create table test(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)。
假设,执行查询的语句是 select id from test where k=5。
那么,这个不同带来的性能差距会有多少呢?答案是, 微乎其微 。
写缓存(change buffer):
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话, 在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
merge :将change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了访问这个数据页会触发merge外,系统有后台线程会定期merge。在数据库正常关闭(shutdown)的过程中,也会执行merge 操作。
如果能够将更新操作先记录在change buffer, 减少读磁盘 ,语句的执行速度会得到明显的提升。而且, 数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存,提高内存利用率。
唯一索引的更新就不能使用change buffer ,实际上也只有普通索引可以使用。
做好区分:
- 读数据用的是缓冲池buffer pool;
- 重做日志有个redo log buffer,是将缓冲池里更新的数据写入redo log buffer,事务提交时根据刷盘策略,将redo log buffer刷盘到redo log file或page cache。
普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,建议你尽量选择普通索引 。
在实际使用中会发现, 普通索引 和 change buffer 的配合使用,对于 数据量大 的表的更新优化 还是很明显的。
不适合change buffer情况:如果所有的更新后面,都马上伴随着对这个记录的查询 ,那么你应该关闭change buffer 。而在其他情况下,change buffer都能提升更新性能。
事务提交的时候,change buffer 的操作也会记录到redo log中,所以崩溃恢复时,change buffer 也可以找回来。
由于唯一索引用不上change buffer的优化机制,因此如果业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?
问题:
不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗?
回答:
统计行数尽量用COUNT(1),COUNT(*):COUNT(1),COUNT(*)时,查询优化器会优先选用有索引的、占用空间最小的二级索引树进行统计,只有找不到非聚簇索引树时采用使用聚簇索引树统计,空间占用大。当然也能COUNT(最小空间二级索引字段),但麻烦不如交给优化器自动选择。
SELECT COUNT(*) FROM student;
SELECT COUNT(1) FROM student;
问:在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT(*) 、 SELECT COUNT(1) 和 SELECT COUNT(具体字段) ,使用这三者之间的查询效率是怎样的?
答:如果你要统计的是某个字段的非空数据行数,则另当别论,毕竟比较执行效率的前提是结果一样才可以。
COUNT(*)和COUNT(1): COUNT(*) 和COUNT(1)都是对所有结果进行COUNT(*),COUNT(*)和COUNT(1)本质上并没有区别(二者执行时间可能略有差别,不过你还是可以把它俩的执行效率看成是相等的)。如果有 WHERE 子句,则是对所有符合筛选条件的数据行进行统计,如果没有 WHERE子句,则是对数据表的数据行数进行统计。
MylSAM 统计只需O(1):如果是 MylSAM 存储引擎,统计数据表的行数只需要 O(1)的复杂度,这是因为每张 MyISAM 的数据表都有一个 meta 信息存储了 row_count 值,而一致性则由表级锁来保证。 如果是InnoDB 存储引擎,因为innoDB 支持事务,采用行级锁和 MVCC机制,所以无法像 MyISAM一样,维护1个row_count变量,因此需要采用扫描全表,是O(n)的复杂度,进行循环+计数的方式来完成统计。
选择建议:在ImnoDB中,如果采用COUNT(具体字段)来统计数据行数,要尽量采用二级索引。因为主键是聚簇索引,聚簇索引叶节点包含整个记录,统计时要加载到内存的数据量更大,性能就差一点。对于COUNT(*)和 COUNT(1)来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计。 如果有多个二级索引,会使用 key_len 小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引来进行统计。
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:
① MySQL 在解析的过程中,会通过查询数据字典将“*”按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用覆盖索引
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了。
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。
COMMIT 所释放的资源:
聊一个实际问题:淘宝的数据库,主键是如何设计的?
某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的MySQL军规。其中,一个最明显的错误就是关于MySQL的主键设计。
大部分人的回答如此自信:用8字节的 BIGINT 做主键,而不要用INT。 错!
这样的回答,只站在了数据库这一层,而没有 从业务的角度 思考主键。主键就是一个自增ID吗?目前用自增做主键,架构设计上可能连及格都拿不到 。
自增ID做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增ID除了简单,其他都是缺点,总体来看存在以下几方面的问题:
可靠性不高
存在自增ID回溯的问题,这个问题直到最新版本的MySQL 8.0才修复。
安全性不高
对外暴露的接口可以非常容易猜测对应的信息。比如:/User/1/这样的接口,可以非常容易猜测用户ID的 值为多少,总用户数量有多少,也可以非常容易地通过接口进行数据的爬取。
性能差
自增ID的性能较差,需要在数据库服务器端生成。
需要额外执行函数得知自增值,影响性能
业务还需要额外执行一次类似 last_insert_id() 的函数才能知道刚才插入的自增值,这需要多一次的 网络交互。在海量并发的系统中,多1条SQL,就多一次性能上的开销。
全局不唯一,高并发时自增锁竞争影响性能
最重要的一点,自增ID是局部唯一,只在当前数据库实例中唯一,而不是全局唯一,在任意服务器间都是唯一的。对于目前分布式系统来说,这简直就是噩梦。
分库分表、数据迁移时,自增不再适用。
为了能够唯一地标识一个会员的信息,需要为 会员信息表设置一个主键。那么,怎么为这个表设置主 键,才能达到我们理想的目标呢? 这里我们考虑业务字段做主键。
表数据如下:
在这个表里,哪个字段比较合适呢?
会员卡号(cardno)看起来比较合适,因为会员卡号不能为空,而且有唯一性,可以用来 标识一条会员 记录。
mysql> CREATE TABLE demo.membermaster
-> (
-> cardno CHAR(8) PRIMARY KEY, -- 会员卡号为主键
-> membername TEXT,
-> memberphone TEXT,
-> memberpid TEXT,
-> memberaddress TEXT,
-> sex TEXT,
-> birthday DATETIME
-> );
Query OK, 0 rows affected (0.06 sec)
不同的会员卡号对应不同的会员,字段“cardno”唯一地标识某一个会员。如果都是这样,会员卡号与会员一一对应,系统是可以正常运行的。
但实际情况是,会员卡号可能存在重复使用的情况。比如,张三因为工作变动搬离了原来的地址,不再到商家的门店消费了(退还了会员卡),于是张三就不再是这个商家门店的会员了。但是,商家不想让这个会员卡空着,就把卡号是“10000001”的会员卡发给了王五。
从系统设计的角度看,这个变化只是修改了会员信息表中的卡号是“10000001”这个会员信息,并不会影响到数据一致性。也就是说,修改会员卡号是“10000001”的会员信息,系统的各个模块,都会获取到修改后的会员信息,不会出现“有的模块获取到修改之前的会员信息,有的模块获取到修改后的会员信息,而导致系统内部数据不一致”的情况。因此,从信息系统层面上看是没问题的。
但是从使用系统的业务层面来看,就有很大的问题了,会对商家造成影响。
比如,我们有一个销售流水表(trans),记录了所有的销售流水明细。2020年12月01日,张三在门店购买了一本书,消费了89元。那么,系统中就有了张三买书的流水记录,如下所示:
接着,我们查询一下 2020 年 12 月 01 日的会员销售记录:
mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 张三 | 书 | 1.000 | 89.00 | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.00 sec)
如果会员卡“10000001”又发给了王五,我们会更改会员信息表。导致查询时:
mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 王五 | 书 | 1.000 | 89.00 | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.01 sec)
这次得到的结果是:王五在 2020 年 12 月 01 日,买了一本书,消费 89 元。显然是错误的!结论:千万不能把会员卡号当做主键。
会员电话可以做主键吗?不行的。在实际操作中,手机号也存在被运营商收回,重新发给别人用的情况。
那身份证号行不行呢?好像可以。因为身份证决不会重复,身份证号与一个人存在一一对应的关系。可问题是,身份证号属于个人隐私,顾客不一定愿意给你。要是强制要求会员必须登记身份证号,会把很多客人赶跑的。其实,客户电话也有这个问题,这也是我们在设计会员信息表的时候,允许身份证号和电话都为空的原因。
所以,建议尽量不要用跟业务有关的字段做主键。毕竟,作为项目设计的技术人员,我们谁也无法预测 在项目的整个生命周期中,哪个业务字段会因为项目的业务需求而有重复,或者重用之类的情况出现。
经验: 刚开始使用 MySQL 时,很多人都很容易犯的错误是喜欢用业务字段做主键,想当然地认为了解业务需求,但实际情况往往出乎意料,而更改主键设置的成本非常高。
在淘宝的电商业务中,订单服务是一个核心业务。请问, 订单表的主键淘宝是如何设计的呢?是自增ID 吗?
打开淘宝,看一下订单信息:
从上图可以发现,订单号不是自增ID!我们详细看下上述4个订单号:
1550672064762308113
1481195847180308113
1431156171142308113
1431146631521308113
订单号是19位的长度,且订单的最后5位都是一样的,都是08113。且订单号的前面14位部分是单调递增的。
大胆猜测,淘宝的订单ID设计应该是:
订单ID = 时间 + 去重字段 + 用户ID后6位尾号
这样的设计能做到全局唯一,且对分布式系统查询及其友好。
非核心业务 :对应表的主键自增ID,如告警、日志、监控等信息。
核心业务 :主键设计至少应该是全局唯一且是单调递增。全局唯一保证在各系统之间都是唯一的,单调 递增是希望插入时不影响数据库性能。推荐使用MySQL8.0 改造为有序UUID,具体通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID
这里推荐最简单的一种主键设计:UUID。
全局唯一,占用36字节,数据无序,插入性能差。
认识UUID:
MySQL数据库的UUID组成如下所示:
UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)
我们以UUID值e0ea12d4-6473-11eb-943c-00155dbaa39d举例:
为什么UUID是全局唯一的?
在UUID中时间部分占用60位,存储的类似TIMESTAMP的时间戳,但表示的是从1582-10-15 00:00:00.00 到现在的100ns的计数。可以看到UUID存储的时间精度比TIMESTAMPE更高,时间维度发生重复的概率降低到1/100ns。
时钟序列是为了避免时钟被回拨导致产生时间重复的可能性。MAC地址用于全局唯一。
为什么UUID占用36个字节?
UUID根据字符串进行存储,设计时还带有无用"-"字符串,因此总共需要36个字节。
为什么UUID是随机无序的呢?
因为UUID的设计中,将时间低位放在最前面,而这部分的数据是一直在变化的,并且是无序。
改造为有序:若将时间高低位互换,则时间就是单调递增的了,也就变得单调递增了。MySQL 8.0可以更换时间低位和时间高位的存储方式,这样UUID就是有序的UUID了。
优化空间占用:MySQL 8.0还解决了UUID存在的空间占用的问题,除去了UUID字符串中无意义的"-"字符串,并且将字符串用二进制类型保存,这样存储空间降低为了16字节。
可以通过MySQL8.0提供的uuid_to_bin函数实现上述功能,同样的,MySQL也提供了bin_to_uuid函数进行转化:
SET @uuid = UUID();
SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);
通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID了。全局唯一 + 单调递增,这不就是我们想要的主键!
有序UUID性能测试:
16字节的有序UUID,相比之前8字节的自增ID,性能和存储空间对比究竟如何呢?
我们来做一个测试,插入1亿条数据,每条数据占用500字节,含有3个二级索引,最终的结果如下所示:
从上图可以看到插入1亿条数据有序UUID是最快的,而且在实际业务使用中有序UUID在 业务端就可以生成 。还可以进一步减少SQL的交互次数。
另外,虽然有序UUID相比自增ID多了8个字节,但实际只增大了3G的存储空间,还可以接受。
在当今的互联网环境中,非常不推荐自增ID作为主键的数据库设计。更推荐类似有序UUID的全局 唯一的实现。
另外在真实的业务系统中,主键还可以加入业务和系统属性,如用户的尾号,机房的信息等。这样 的主键设计就更为考验架构师的水平了。
手动赋值字段做主键!
比如,设计各个分店的会员表的主键,因为如果每台机器各自产生的数据需要合并,就可能会出现主键重复的问题。
可以在总部 MySQL 数据库中,有一个管理信息表,在这个表中添加一个字段,专门用来记录当前会员编号的最大值。
门店在添加会员的时候,先到总部 MySQL 数据库中获取这个最大值,在这个基础上加 1,然后用这个值作为新会员的“id”,同时,更新总部 MySQL 数据库管理信息表中的当前会员编号的最大值。
这样一来,各个门店添加会员的时候,都对同一个总部 MySQL 数据库中的数据表字段进行操作,就解决了各门店添加会员时会员编号冲突的问题。