一、PyTorch基础

一、PyTorch基本操作

1,导包

import torch

2,查看版本号

torch.__version__
"""
'2.0.1+cpu'
"""

3,初始化(全零)矩阵

x = torch.empty(3,2)
x
"""
tensor([[7.2868e-44, 8.1275e-44],
        [6.7262e-44, 7.5670e-44],
        [8.1275e-44, 6.7262e-44]])
"""

4,随机创建初始化矩阵

4.1 符合正态分布

x_1 = torch.randn(3,4)
x_1
"""
tensor([[ 0.1605, -0.9290, -0.0501, -0.0723],
        [ 0.6792,  0.1977, -0.7773,  0.6927],
        [ 0.7576, -1.4204,  0.1976, -2.2545]])

"""

4.2 符合均匀分布

x_2 = torch.rand(3,4)
x_2
"""
tensor([[0.5876, 0.5991, 0.9678, 0.8188],
        [0.2934, 0.4345, 0.1316, 0.8469],
        [0.0042, 0.3754, 0.3141, 0.8362]])
"""

5,初始化全零矩阵

x1 = torch.zeros(5,2,dtype=torch.long)
x1
"""
tensor([[0, 0],
        [0, 0],
        [0, 0],
        [0, 0],
        [0, 0]])
"""

6,初始化全一矩阵

x2 = torch.ones(3,4)
x2
"""
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
"""

7,查看矩阵大小规格

x2.size()
"""
torch.Size([3, 4])
"""

8,改变矩阵维度

y = torch.randn(3,4)
y
"""
tensor([[-1.3152,  0.2621, -0.7739,  0.1728],
        [-1.3887,  1.0964,  0.7797,  2.0587],
        [ 0.4726, -0.2367,  0.8845,  0.9405]])
"""

y1 = y.view(12)
y1
"""
tensor([-1.3152,  0.2621, -0.7739,  0.1728, -1.3887,  1.0964,  0.7797,  2.0587,  0.4726, -0.2367,  0.8845,  0.9405])
"""


y2 = y.view(2,6)
y2
"""
tensor([[-1.3152,  0.2621, -0.7739,  0.1728, -1.3887,  1.0964],
        [ 0.7797,  2.0587,  0.4726, -0.2367,  0.8845,  0.9405]])
"""


y3 = y.view(6,-1)
y3
"""
tensor([[-1.3152,  0.2621],
        [-0.7739,  0.1728],
        [-1.3887,  1.0964],
        [ 0.7797,  2.0587],
        [ 0.4726, -0.2367],
        [ 0.8845,  0.9405]])
"""

9,Numpy和Tensor格式互转

9.1 Numpy转Tensor

z1 = torch.ones(2,5)
z1
"""
tensor([[1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.]])
"""

z2 = z1.numpy()
z2
"""
array([[1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.]], dtype=float32)
"""

9.2 Tensor转Numpy

import numpy as np
a1 = np.ones([2,4])
a1
"""
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.]])
"""

a2 = torch.from_numpy(a1)
a2
"""
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.]], dtype=torch.float64)
"""

10,Tensor常见形式

import torch
from torch import tensor

10.1 scalar

只要是个或者单一的值,就成为scalar

x = tensor(22)
x
"""
tensor(22)
"""

x.dim() # 0
2*x # tensor(44)
x.item() # 22

10.2 vector

vector向量,表示某一个特征。例如:[年龄,身高,体重],[25,178,60]
向量不是一个值,而实多个值的集合

我的理解是:多个scalar构成了vector

y = tensor([25,178,60])
y
"""
tensor([ 25, 178,  60])
"""

y.dim() # 1
y.size() # torch.Size([3])

10.3 matrix

matrix矩阵,通常是多个维度的。
例如:有三个学生,张三、李四、王二麻子,他们也都有各自的特征([年龄,身高,体重]),[[25,178,60], [22,180,62], [21,177,61]],组合到一块就成了matrix矩阵。

我的理解是:多个vector构成了matrix
一、PyTorch基础_第1张图片

m = tensor([[1,2,3], [2,1,3], [3,1,2]])
m
"""
tensor([[1, 2, 3],
        [2, 1, 3],
        [3, 1, 2]])
"""

m.matmul(m)
"""
tensor([[14,  7, 15],
        [13,  8, 15],
        [11,  9, 16]])
"""

tensor([1,0,1]).matmul(m)
"""
tensor([4, 3, 5])
"""

tensor([1,2,1]).matmul(m)
"""
tensor([ 8,  5, 11])
"""

m*m
"""
tensor([[1, 4, 9],
        [4, 1, 9],
        [9, 1, 4]])
"""

10.4 n-dimensional tensor

pytorch在处理图像中常用到[N,C,H,W]四维tensor进行处理
N:每一个batch中的图像数量
C:每一张图像中的通道数
H:每一张图像垂直维度的像素数个数(高)
W:每一张图像水平维度的像素数个数(宽)
一、PyTorch基础_第2张图片

11,Model Zoo

调用别人训练好的网络架构以及权重参数,最终通过一行代码就可以搞定。
方便懒人进行调用,Pytorch中成为hub模块
Github上相关链接
pytorch官网API链接

例如,打开pytorch官网中的随便一个项目,复制粘贴即可运行,下载相关权重参数文件的时候需要科学上网。

二、autograd自动求导机制

案例一:反向传播求导,函数表达式为y = w*x*x + b*x + c其中w=2,x=3,b=5,c=4
一、PyTorch基础_第3张图片

import torch
w = torch.tensor(2, dtype = torch.float32, requires_grad = True)
x = torch.tensor(3, dtype = torch.float32, requires_grad = True)
b = torch.tensor(5, dtype = torch.float32, requires_grad = True)
c = torch.tensor(4, dtype = torch.float32, requires_grad = True)
w,x,b,c
"""
(tensor(2., requires_grad=True),
 tensor(3., requires_grad=True),
 tensor(5., requires_grad=True),
 tensor(4., requires_grad=True))
"""

y = w * x**2 + b * x + c
y
"""
tensor(37., grad_fn=)
"""

y.backward() #反向传播

w.grad
"""
tensor(9.)
"""
x.grad
"""
tensor(17.)
"""
b.grad
"""
tensor(3.)
"""
c.grad
"""
tensor(1.)
"""

三、最基础的模型训练完整步骤演示

需求:监督学习,训练模型符合y = 2*x + 5

import torch
import numpy as np

1,标签数据准备

① x样本

Ⅰ、0-9,10个数

这里为了简单起见,x样本为0-9,10个数,用列表存储

x = [i for i in range(10)]
x # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Ⅱ、转换成array格式方便操作

x_arr = np.array(x,dtype=np.float32)
x_arr # array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], dtype=float32)

Ⅲ、转换成一列数据,方便后续操作

x_train = x_arr.reshape(-1,1)
x_train
"""
array([[0.],
       [1.],
       [2.],
       [3.],
       [4.],
       [5.],
       [6.],
       [7.],
       [8.],
       [9.]], dtype=float32)
"""

x_train.shape # (10, 1)

② y样本

Ⅰ、通过函数y=2*x+5生成对应的结果y

y = [2*x+5 for x in range(10)]
y # [5, 7, 9, 11, 13, 15, 17, 19, 21, 23]

Ⅱ、转换成array格式方便操作

y_arr = np.array(y,dtype=np.float32)
y_arr # array([ 5.,  7.,  9., 11., 13., 15., 17., 19., 21., 23.], dtype=float32)

Ⅲ、转换成一列数据,方便后续操作

y_train = y_arr.reshape(-1,1)
y_train
"""
array([[ 5.],
       [ 7.],
       [ 9.],
       [11.],
       [13.],
       [15.],
       [17.],
       [19.],
       [21.],
       [23.]], dtype=float32)
"""

y_train.shape # (10, 1)

2,设计模型

这里使用一个最简单的两层线性层进行搭建模型,训练的数据都是单一一个
第一层输入维度为1,输出维度为2
第二层输入维度是2,输出维度是1

class Linear_yy(torch.nn.Module):
    def __init__(self,in_dim,media_dim,out_dim):
        super(Linear_yy,self).__init__()
        self.linear_1 = torch.nn.Linear(in_dim,media_dim)
        self.linear_2 = torch.nn.Linear(media_dim,out_dim)
        
    def forward(self,x):
        x = self.linear_1(x)
        x = self.linear_2(x)
        return x
in_dim = 1
media_dim = 2
out_dim = 1

model = Linear_yy(in_dim=in_dim,media_dim=media_dim,out_dim=out_dim)
model
"""
Linear_yy(
  (linear_1): Linear(in_features=1, out_features=2, bias=True)
  (linear_2): Linear(in_features=2, out_features=1, bias=True)
)
"""

3,指定epoch、学习率、优化器、损失函数等参数

epochs = 1000 #epoch
learning_rate = 0.0001 # 学习率
optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate) # 优化器选择Adam
loss_faction = torch.nn.MSELoss() # 损失函数选择MSE

4,训练模型

for epoch in range(epochs):
    epoch += 1
    # 注意转行成tensor
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)

    # 梯度要清零每一次迭代
    optimizer.zero_grad() 

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = loss_faction(outputs, labels)

    # 返向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()
    if epoch % 50 == 0: # 每50次输出一次损失值
        print('epoch {}, loss {}'.format(epoch, loss.item()))

5,模型预测

predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
predicted
"""
array([[0.6956282 ],
       [0.75930536],
       [0.82298255],
       [0.88665974],
       [0.9503369 ],
       [1.014014  ],
       [1.0776913 ],
       [1.1413685 ],
       [1.2050457 ],
       [1.2687228 ]], dtype=float32)
"""

6,模型权重保存

torch.save(model.state_dict(), 'model.pth')

在这里插入图片描述

7,模型权重加载

模型权重加载一般用于模型训练中断,需要使用上次的权重参数接着训练,此时就需要先保存模型,然后再加载权重参数即可

model.load_state_dict(torch.load('model.pth'))

8,完整代码(CPU)

当然,这只是训练模型的完整代码,最后的测试和保存模型权重,参考5,6,7即可

import torch
import torch.nn as nn
import numpy as np

class Linear_yy(torch.nn.Module):
    def __init__(self,in_dim,media_dim,out_dim):
        super(Linear_yy,self).__init__()
        self.linear_1 = torch.nn.Linear(in_dim,media_dim)
        self.linear_2 = torch.nn.Linear(media_dim,out_dim)
        
    def forward(self,x):
        x = self.linear_1(x)
        x = self.linear_2(x)
        return x
    
in_dim = 1
media_dim = 2
out_dim = 1

model = Linear_yy(in_dim=in_dim,media_dim=media_dim,out_dim=out_dim)

epochs = 1000
learning_rate = 0.0001
optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate)
loss_faction = torch.nn.MSELoss()

for epoch in range(epochs):
    epoch += 1
    # 注意转行成tensor
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)

    # 梯度要清零每一次迭代
    optimizer.zero_grad() 

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = loss_faction(outputs, labels)

    # 返向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()
    if epoch % 50 == 0:
        print('epoch {}, loss {}'.format(epoch, loss.item()))

9,完整代码(GPU)

使用GPU训练只需要把训练数据模型放入GPU中即可

指定是否使用GPU训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

模型放入GPU中
model.to(device)

数据放入GPU中
inputs = torch.from_numpy(x_train).to(device)
labels = torch.from_numpy(y_train).to(device)

import torch
import torch.nn as nn
import numpy as np

class Linear_yy(torch.nn.Module):
    def __init__(self,in_dim,media_dim,out_dim):
        super(Linear_yy,self).__init__()
        self.linear_1 = torch.nn.Linear(in_dim,media_dim)
        self.linear_2 = torch.nn.Linear(media_dim,out_dim)
        
    def forward(self,x):
        x = self.linear_1(x)
        x = self.linear_2(x)
        return x
    
in_dim = 1
media_dim = 2
out_dim = 1

model = Linear_yy(in_dim=in_dim,media_dim=media_dim,out_dim=out_dim)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

epochs = 1000
learning_rate = 0.0001
optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate)
loss_faction = torch.nn.MSELoss()

for epoch in range(epochs):
    epoch += 1
    # 注意转行成tensor
    inputs = torch.from_numpy(x_train).to(device)
    labels = torch.from_numpy(y_train).to(device)
    
    # 梯度要清零每一次迭代
    optimizer.zero_grad() 

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = loss_faction(outputs, labels)

    # 返向传播
    loss.backward()

    # 更新权重参数
    optimizer.step()
    if epoch % 50 == 0:
        print('epoch {}, loss {}'.format(epoch, loss.item()))

你可能感兴趣的:(pytorch,python,人工智能)