- 国产(以麒麟为例)环境,离线安装docker、docker-compose、milvus
般若-波罗蜜
1024程序员节dockerpython深度学习pytorch
文章目录一、专有名词解释1.主流cpu2.操作系统二、安装docker2.读入数据总结docker错误解决方法一、专有名词解释1.主流cpu架构(指令集)x86(早期intel开发的32位指令集)x64(CISC)1)AMD64--------AMD首先开发出64位指令集,向下兼容32位2)x86_64--------intel使用AMD的64位指令集,换了个名字而已ARMAArch64为ARMv
- Neo4j 的向量搜索(Neo4jVector)和常见的向量数据库(比如 Milvus、Qdrant)之间的区别与联系
先说联系(共同点)点内容✅都支持向量检索都可以基于embedding(向量)做相似度搜索,比如给一段文本、找出最相似的若干条记录。✅都用于语义检索你可以把它们用在RAG(检索增强生成)、ChatwithDocs、智能问答、推荐系统等应用里。✅都支持批量插入、查询都可以批量向数据库中插入文本+向量,然后用向量做top-k检索(如search(k=8))。✅都和LangChain集成它们都可以通过la
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- 安装milvus数据库
weixin_44080967
milvus数据库
#创建保存目录mkdir-pdocker_images_backupcddocker_images_backup#1.保存Milvus镜像dockersave-omilvus_latest.tarmilvusdb/milvus:latest#2.保存MinIO镜像dockersave-ominio_latest.tarminio/minio:latest#3.保存ETCD镜像dockersave-
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- 新手如何本地构建Milvus向量数据库
BeMiracle~
milvus数据库
简单构建一个Milvus数据库一、前言:什么是Milvus数据库二、安装Docker官方下载地址:配置Docker三、安装Milvus四、Milvus关键概念介绍1、首先创建数据库2、然后创建逻辑定义3、添加字段4、创建集合collection5、建立索引(有索引才能查询数据)6、插入更新删除数据7、查询数据(查询limit个相似向量)一、前言:什么是Milvus数据库Milvus是一款开源向量
- Milvus数据库创建
cts618
Milvus分布式向量数据库数据库milvusoracle
URL:https://milvus.io/docs/zh/manage_databases.mdfrompymilvusimportMilvusClient"""URL:https://milvus.io/docs/zh/manage_databases.md"""#创建数据库client=MilvusClient(uri="",token="")client.create_database(d
- Milvus知识库创建
importconfigparserimporttimeimportrandomfrompymilvusimportMilvusClientfrompymilvusimportDataTypecfp=configparser.RawConfigParser()cfp.read('config.ini')milvus_uri=cfp.get('example','uri')token=cfp.get
- Milvus中 Collections 级多租户 和 分区级多租户 的区别
背太阳的牧羊人
人工智能RAG优化方法milvus向量数据库
原文链接图片内容中。1,所有租户共用一个Collection:所有租户共享一个Collection,租户特定字段用于过滤。2,每个租户一个分区:租户共享一个Collections,但他们的数据存储在不同的分区中。我们可以通过为每个租户分配一个专用分区来隔离数据。3,基于PartitionKey的多租户:这是一种可扩展性更强的方案,其中单个Collections使用分区Key来区分租户。它们看起来相
- Milvus 资源调度系统的核心部分:「查询节点」「资源组」「数据库」
背太阳的牧羊人
milvus数据库milvus数据库
Milvus的资源管理分为三层:查询节点、资源组和数据库。查询节点:处理查询任务的组件。它在物理机或容器(如Kubernetes中的pod)上运行。资源组:查询节点的集合,充当逻辑组件(数据库和Collections)与物理资源之间的桥梁。您可以将一个或多个数据库或集合分配给一个资源组。下面我将详细解释这三个概念。总体图(打个比方)你可以把整个Milvus系统想象成一个「大型图书馆系统」,里头有:
- 向量数据库milvus中文全文检索取不到数据的处理办法
--勇
数据库milvus全文检索
检查中文分词配置Milvus2.5+支持原生中文全文检索,但需显式配置中文分词器:创建集合时指定分词器类型为chinesepythonschema.add_field(field_name="text",datatype=DataType.VARCHAR,max_length=65535,enable_analyzer=True,analyzer_params={"type":"chinese"}
- pymilvus.exceptions.MilvusException: <MilvusException: (code=0, message=attempt #0: channel=by-dev-r
Langchain连接AI大模型连接milvus数据库,向milvus同步数据时报错如下:ERROR:ExceptioninASGIapplicationTraceback(mostrecentcalllast):File"/home/devops/.local/lib/python3.10/site-packages/uvicorn/protocols/http/httptools_impl.p
- Milvus向量数据库:处理和分析大规模向量数据
concisedistinct
人工智能milvus数据库向量人工智能机器学习高可用容灾
目录一Milvus概述性能可扩展性易用性二Milvus的核心技术1向量索引HNSWIVFPQ2GPU加速3分布式架构分布式三深入了解Milvus的技术细节1存储机制持久化存储内存存储2数据导入与导出批量导入实时导入3高可用性与容灾机制数据副本自动故障恢复数据备份与恢复四实践中的Milvus1电商平台的图像搜索系统架构性能优化2金融行业的风险控制系统架构成果与展望五结语在当今数据驱动的世界中,处理和
- 局域网访问WSL服务——问题排查笔记
迟三登
linuxwindows
给团队做了一个RAG项目,由于使用的向量数据库是milvus(不支持Windows),以及方便后面项目迁移到服务器,遂开发调试过程中使用的是WSL2。项目在本机上开发调试结束后,由于是给团队使用的,需要局域网内其它设备能够访问这个运行在WSL2上的服务。这次的排查经历相对比较完整,可以作为以后参考的排查清单。目标:允许局域网内的其他设备访问运行在WSL内部的服务。初始环境:Windows主机IP(
- docker 安装 milvus standalone 版本 + attu
Jiangnan_Cai
Linuxdockermilvus数据库
首先,milvus向量数据库和sql类似,有lite版本和standalone版本,就是功能有些阉割:milvuslite的话python直接安装pymilvus就可以用了standalone版本则需要通过docker来进行部署1.安装docker与docker-compose这个在这里就不赘述了,但是需要将docker的源换成国内可用的,经过我测试,针对milvus镜像的下载,国内的下面两个源是
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- CentOS使用docker-compose在线部署milvus服务(超详细)
男孩一泽
milvusCentOS人脸搜索dockercentosmilvus
部署milvus服务(在线部署docker、docker-compose、milvus服务)注意事项:若所有操作在root用户下进行,则无需执行第2步、第4步的第1条、第6步的第1条离线部署适用于内网服务器,比较麻烦,若服务器可以访问外网,参考milvus在线部署版部署步骤在root账户下创建milvus账户执行如下命令useradd-mmilvuspasswdmilvus输入两次密码密码设置成功
- ModaHub魔搭社区:基于 Amazon EKS 搭建开源向量数据库 Milvus
大禹智库
《向量数据库指南》《实战AI智能体》开源数据库milvus向量数据库ModaHubAI模型魔搭社区
目录01前言02架构说明03先决条件04创建EKS集群05部署Milvus数据库06优化Milvus配置07测试Milvus集群08总结01前言生成式AI(GenerativeAI)的火爆引发了广泛的关注,也彻底点燃了向量数据库(VectorDatabase)市场,众多的向量数据库产品开始真正出圈,走进大众的视野。根据IDC的预测,到2025年,超过80%的业务数据将是非结构化的,以文本、图像、音
- Linux CentOS安装Docker和docker-compose和milvus
数据叨叨叨
linuxcentosdocker
一、LinuxCentOS安装Docker在CentOS上安装Docker与在Ubuntu上类似,但有一些微小的差异。以下是在CentOS上安装Docker的步骤:更新系统:确保系统处于最新状态。使用以下命令更新软件包列表:sudoyumupdate安装依赖包:安装一些必要的软件包,以便能够通过HTTPS使用存储库:sudoyuminstall-yyum-utilsdevice-mapper-pe
- Docker【部署 04】Docker Compose下载安装及实例Milvus Docker compose(CPU)使用说明分享_docker compose 下载
2401_84301352
dockermilvuseureka
1.Compose说明DockerCompose是一个用于定义和管理多个Docker容器的工具,旨在简化容器化应用程序的开发、部署和管理过程。通过DockerCompose,您可以使用一个单独的配置文件(通常是docker-compose.yml文件)来描述应用程序中涉及的多个容器、网络设置、存储卷等。DockerCompose官网安装说明文档。1.1OverviewofinstallingDoc
- 使用 Docker Compose 安装 Milvus(单机版)
openlabx.org.cn
dockermilvus向量数据库人工智能
1.创建专用目录并进入mkdirmilvus-standalone&&cdmilvus-standalone2.下载docker-compose.yml文件使用官方提供的配置文件(以Milvusv2.3.3为例):wgethttps://github.com/milvus-io/milvus/releases/download/v2.3.3/milvus-standalone-docker-com
- Milvus/ES 插入方案对比
风筝超冷
milvuspython开发语言
在Python中加载它并打印一个示例嵌入的维度。python-c"fromsentence_transformersimportSentenceTransformer;model=SentenceTransformer('/root/.cache/modelscope/hub/models/Qwen/Qwen3-Embedding-0.6B');example_embedding=model.en
- 大模型联网查询,以及milvus向量数据库的使用
菜鸡且互啄69
langchainpythonRAG
首先先不要回答,根据用户的提问先进行联网搜索#根据用户输入的问题,调用SerperAPI执行联网检索,返回search_top_k个相关的链接search_results=awaitsearch(query,search_top_k)asyncdefsearch(query,num,locale=''):"""定义一个异步函数,用于发起SerperAPI的实时GoogleSearch"""#初始化
- LangChain 与 Milvus 的碰撞:全文检索技术实践
金汐脉动 | PulseTide
禅与LangChainlangchainmilvus全文检索
一、全文搜索全文搜索是一种通过匹配文本中特定关键词或短语来检索文档的传统方法。它根据词频等因素计算出的相关性分数对结果进行排序。语义搜索更善于理解含义和上下文,而全文搜索则擅长精确的关键词匹配,因此是语义搜索的有益补充。BM25算法被广泛用于全文搜索的排序,并在检索增强生成(RAG)中发挥着关键作用。Milvus2.5引入了使用BM25的本地全文搜索功能。这种方法将文本转换为代表BM25分数的稀疏
- Centos7.9上离线安装milvus2.2.9
云游
milvus大模型milvus人工智能
1.版本说明etcd:v3.5.5minio:RELEASE.2023-03-20T20-16-18Zmilvus:v2.2.92.创建milvus文件夹并上传离线包#mkdirmilvus#cdmilvus/docker-compose.yml、etcd.tar、milvus.tar、minio.tar3.加载3个镜像#dockerload-ietcd.tar#dockerload-iminio
- 从MaxCompute到Milvus:通过DataWorks进行数据同步,实现海量数据高效相似性检索
在如今大数据和人工智能应用场景中,企业往往需要对存储在云数据仓库(如云原生大数据计算服务MaxCompute)中的大规模结构化数据进行向量化处理,以支持高效的向量检索和相似性分析等AI应用。阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、
- Faiss vs Milvus 深度对比:向量数据库技术选型指南
FaissvsMilvus深度对比:向量数据库技术选型指南引言:向量数据库的时代抉择在AI应用爆发的今天,企业和开发者面临着如何存储和检索海量向量数据的重大技术选择。作为当前最受关注的两大解决方案,Faiss和Milvus代表了两种不同的技术路线。本文将从架构设计到应用场景进行全面对比,助您做出明智的技术决策。一、核心定位差异维度FaissMilvus性质算法库完整数据库系统开发方Facebook
- pymilvus
老兵发新帖
人工智能
一.pymilvus介绍pymilvus是什么?pymilvus是连接和操作Milvus向量数据库的PythonSDK,用于处理大规模向量数据的存储、索引和搜索。️Milvus向量数据库什么是Milvus?专业向量数据库-专门为向量数据设计的数据库系统☁️云原生架构-支持分布式部署和水平扩展⚡高性能-基于FAISS、Annoy等多种向量索引引擎pymilvus基本使用安装pipinstallpym
- Milvus 启动失败排查案例:Etcd 未启动引发的 Goroutine 堆栈分析
gs80140
各种问题milvusetcd数据库
目录Milvus启动失败排查案例:Etcd未启动引发的Goroutine堆栈分析背景说明现象解读原因定位️解决方案✅步骤一:检查Etcd服务状态✅步骤二:重新启动Etcd✅步骤三:再次启动Milvus总结建议与实践Milvus启动失败排查案例:Etcd未启动引发的Goroutine堆栈分析在实际部署向量数据库Milvus的过程中,启动失败的情况并不少见。本文通过一次真实案例,解析如何通过gorou
- Milvus attu - docker 使用 及 版本兼容
丽英y
实践笔记milvusdockerattu数据库向量rag
文章目录版本查看attu和milvus的兼容性Docker加载attudocker合并到Milvus文件管理使用dockercompose挂在Milvus,登录attu出现报错:Error:FailedtoconnecttoMilvus:Error:1CANCELLED:Callcancelled于是检查兼容问题版本查看Milvus版本发布:https://github.com/milvus-io
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin