先看下spark实现word count的方式
val lines = sc.textFile(...)
val words = lines.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
如果不用spark框架,而用scala语言直接实现,因为scala原本没有reduceByKey这个操作,需要通过隐式转换实现reduceByKey
第一步,定义一个类Foo,接收一个Seq类型的入参,定义一个reduceByKey方法,传入一个函数f。先对Seq使用了groupBy,得到的是一个键值对形式,value是Seq((k,v1), (k, v2), ...)的形式,需要把v取出来做reduce操作,传入函数f,如下
class Foo[K, V](seq:Seq[(K, V)]) {
def reduceByKey(f: (V, V) => V ): Seq[(K, V)] = {
seq.groupBy(_._1).map(x => (x._1,x._2.map(_._2).reduce(f))).toSeq
}
}
第二步,声明隐式转换
implicit def Seq2Foo(seq:Seq[(String, Int)]) = new Foo[String, Int](seq)
完整代码如下
object Test {
def main(args: Array[String]): Unit = {
val lines = Seq("hello world", "hello scala", "hello")
implicit def Seq2Foo(seq:Seq[(String, Int)]) = new Foo[String, Int](seq)
val words = lines.flatMap(_.split(" ")).map((_,1))
val wc = words.reduceByKey(_+_)
wc.foreach(println)
}
}
class Foo[K, V](seq:Seq[(K, V)]) {
def reduceByKey(f: (V, V) => V ): Seq[(K, V)] = {
seq.groupBy(_._1).map(x => (x._1,x._2.map(_._2).reduce(f))).toSeq
}
}
结果为
(scala,1)
(world,1)
(hello,3)
另外一个for循环版本也可以实现
import scala.collection.mutable
class Foo2[K, V](seq: Seq[(K, V)]) {
def reduceByKey(f: (V, V) => V): Seq[(K, V)] = {
val m = mutable.Map[K, V]()
for ((k, v) <- seq)
if (m contains k)
m(k) = f(v, m(k))
else
m(k) = v
m.toSeq
}
}
implicit def Seq2Foo2(seq: Seq[(String, Int)]) = new Foo2[String, Int](seq)