信号量使用之:线程间同步与互斥,线程与中断同步,资源计数

一、线程与线程的同步、互斥(锁)

生产者与消费者问题本质是:解决线程间互斥关系和同步关系问题

由于缓冲区是临界资源,它一个时刻只允许一个生产者放入消息,或者一个消费者从中取出消息,所以需要解决互斥访问的问题。

同时生产者和消费者又是一个相互协作的关系,生产者生产以后,消费者才能消费,因此又存在一个同步问题。

为了解决上述既互斥又同步的问题,需要定义如下3 个信号量分:

①lock:信号量锁的作用,因为 2 个线程都会对同一个数组 array 进行操作,所以该数组是一个共享资源,锁用来保护这个共享资源。

②empty:空位个数,初始化为 5 个空位。

③full:满位个数,初始化为 0 个满位。

2 个线程分别为:

①生产者线程:获取到空位后,产生一个数字,循环放入数组中,然后释放一个满位。

②消费者线程:获取到满位后,读取数组内容并相加,然后释放一个空位。

信号量使用之:线程间同步与互斥,线程与中断同步,资源计数_第1张图片

 

锁(线程与线程的互斥),单一的锁常应用于多个线程间对同一共享资源(即临界区)的访问。信号量在作为锁来使用时,通常应将信号量资源实例初始化成 1,代表系统默认有一个资源可用,因为信号量的值始终在 1 和 0 之间变动,所以这类锁也叫做二值信号量。如上图第一部分所示,当线程需要访问共享资源时,它需要先获得这个资源锁。当这个线程成功获得资源锁时,其他打算访问共享资源的线程会由于获取不到资源而挂起,这是因为其他线程在试图获取这个锁时,这个锁已经被锁上(信号量值是 0)。当获得信号量的线程处理完毕,退出临界区时,它将会释放信号量并把锁解开,而挂起在锁上的第一个等待线程将被唤醒从而获得临界区的访问权。

 

当创建一个信号量时,内核首先创建一个信号量控制块,然后对该控制块进行基本的初始化工作,创建信号量使用下面的函数接口:

rt_sem_t rt_sem_create (const char *name , rt_uint32_t value , rt_uint8_t flag) ;

当调用这个函数时,系统将先从对象管理器中分配一个 semaphore 对象,并初始化这个对象,然后初始化父类 IPC 对象以及与 semaphore 相关的部分。

在创建信号量指定的参数中,信号量标志参数决定了当信号量不可用时,多个线程等待的排队方式。当选择 RT_IPC_FLAG_FIFO(先进先出)方式时,那么等待线程队列将按照先进先出的方式排队,先进入的线程将先获得等待的信号量;当选择 RT_IPC_FLAG_PRIO(优先级等待)方式时,等待线程队列将按照优先级进行排队,优先级高的等待线程将先获得等待的信号量。

rt_err_t rt_sem_take (rt_sem_t sem , rt_int32_t time) 获取信号量函数

因为线程通过调用该函数获取信号量来获得信号量资源实例,当信号量值大于零时,线程将获得信号量, 并且相应的信号量值会减 1;如果信号量的值等于零,那么说明当前信号量资源实例不可用,申请该信号量的线程将根据 time 参数的情况选择直接返回、或挂起等待一段时间、或永久等待,直到 其他线程或中断释放该信号量。

 


#include 

#define THREAD_PRIORITY       6
#define THREAD_STACK_SIZE     512
#define THREAD_TIMESLICE      5

/* 定义最大 5 个元素能够被产生 */
#define MAXSEM 5

/* 用于放置生产的整数数组 */
rt_uint32_t array[MAXSEM];

/* 指向生产者、消费者在 array 数组中的读写位置 */
static rt_uint32_t set, get;

/* 指向线程控制块的指针 */
static rt_thread_t producer_tid = RT_NULL;
static rt_thread_t consumer_tid = RT_NULL;

struct rt_semaphore sem_lock;
struct rt_semaphore sem_empty, sem_full;

/* 生产者线程入口 */
void producer_thread_entry(void *parameter)
{
    int cnt = 0;

    /* 运行 10 次 */
    while (cnt < 10)
    {
        /* 获取一个空位 */
        rt_sem_take(&sem_empty, RT_WAITING_FOREVER);

        /* 修改 array 内容,上锁 */
        rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
        array[set % MAXSEM] = cnt + 1;
        rt_kprintf("the producer generates a number: %d\n", array[set % MAXSEM]);
        set++;
        rt_sem_release(&sem_lock);

        /* 发布一个满位 */
        rt_sem_release(&sem_full);
        cnt++;

        /* 暂停一段时间 */
        rt_thread_mdelay(20);
    }

    rt_kprintf("the producer exit!\n");
}

/* 消费者线程入口 */
void consumer_thread_entry(void *parameter)
{
    rt_uint32_t sum = 0;

    while (1)
    {
        /* 获取一个满位 */
        rt_sem_take(&sem_full, RT_WAITING_FOREVER);

        /* 临界区,上锁进行操作 */
        rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
        sum += array[get % MAXSEM];
        rt_kprintf("the consumer[%d] get a number: %d\n", (get % MAXSEM), array[get % MAXSEM]);
        get++;
        rt_sem_release(&sem_lock);

        /* 释放一个空位 */
        rt_sem_release(&sem_empty);

        /* 生产者生产到 10 个数目,停止,消费者线程相应停止 */
        if (get == 10) break;

        /* 暂停一小会时间 */
        rt_thread_mdelay(50);
    }

    rt_kprintf("the consumer sum is: %d\n", sum);
    rt_kprintf("the consumer exit!\n");
}

int producer_consumer(void)
{
    set = 0;
    get = 0;

    /* 初始化 3 个信号量 */
    rt_sem_init(&sem_lock, "lock",     1,      RT_IPC_FLAG_FIFO);
    rt_sem_init(&sem_empty, "empty",   MAXSEM, RT_IPC_FLAG_FIFO);
    rt_sem_init(&sem_full, "full",     0,      RT_IPC_FLAG_FIFO);

    /* 创建生产者线程 */
    producer_tid = rt_thread_create("producer",
                                    producer_thread_entry, RT_NULL,
                                    THREAD_STACK_SIZE,
                                    THREAD_PRIORITY - 1,
                                    THREAD_TIMESLICE);
    if (producer_tid != RT_NULL)
    {
        rt_thread_startup(producer_tid);
    }
    else
    {
        rt_kprintf("create thread producer failed");
        return -1;
    }

    /* 创建消费者线程 */
    consumer_tid = rt_thread_create("consumer",
                                    consumer_thread_entry, RT_NULL,
                                    THREAD_STACK_SIZE,
                                    THREAD_PRIORITY + 1,
                                    THREAD_TIMESLICE);
    if (consumer_tid != RT_NULL)
    {
        rt_thread_startup(consumer_tid);
    }
    else
    {
        rt_kprintf("create thread consumer failed");
        return -1;
    }

    return 0;
}

/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(producer_consumer, producer_consumer sample);

 

二、中断与线程的同步

信号量也能够方便地应用于中断与线程间的同步,例如一个中断触发,中断服务例程需要通知线程进行相应的数据处理。这个时候可以设置信号量的初始值是 0,线程在试图持有这个信号量时,由于信号量的初始值是 0,线程直接在这个信号量上挂起直到信号量被释放。当中断触发时,先进行与硬件相关的动作,例如从硬件的 I/O 口中读取相应的数据,并确认中断以清除中断源,而后释放一个信号量来唤醒相应的线程以做后续的数据处理。例如 FinSH 线程的处理方式,如下图所示。

信号量使用之:线程间同步与互斥,线程与中断同步,资源计数_第2张图片

信号量的值初始为 0,当 FinSH 线程试图取得信号量时,因为信号量值是 0,所以它会被挂起。当 console 设备有数据输入时,产生中断,从而进入中断服务例程。在中断服务例程中,它会读取 console 设备的数据,并把读得的数据放入 UART buffer 中进行缓冲,而后释放信号量,释放信号量的操作将唤醒 shell 线程。在中断服务例程运行完毕后,如果系统中没有比 shell 线程优先级更高的就绪线程存在时,shell 线程将持有信号量并运行,从 UART buffer 缓冲区中获取输入的数据。

注:中断与线程间的互斥不能采用信号量(锁)的方式,而应采用开关中断的方式。因为中断是快进快出,而信号量

三、资源计数

信号量也可以认为是一个递增或递减的计数器,需要注意的是信号量的值非负例如:初始化一个信号量的值为 5,则这个信号量可最大连续减少 5 次,直到计数器减为 0。

资源计数适合于线程间工作处理速度不匹配的场合,这个时候信号量可以做为前一线程工作完成个数的计数,而当调度到后一线程时,它也可以以一种连续的方式一次处理多个事件。例如,生产者与消费者问题中,生产者可以对信号量进行多次释放,而后消费者被调度到时能够一次处理多个信号量资源。

注:一般资源计数类型多是混合方式的线程间同步,因为对于单个的资源处理依然存在线程的多重访问,这就需要对一个单独的资源进行访问、处理,并进行锁方式的互斥操作。(资源计数+锁)

 

 

 

 

 

你可能感兴趣的:(嵌入式,同步,互斥,线程,信号量,生产消费)