MapReduce将HDFS数据清洗到多个Hbase表中

最近一直在对历史数据进行清洗,原始数据是纯数据格式,现在要清洗到hbase中,方便后期跟hive进行整合查询。。
可能现在基本上都使用spark来做清洗了,但是如果受机器本身硬件条件的限制的话,就没法子了,spark根本跑不动,哎,还是老老实实的写MR吧。。话不多说,直接上代码。

import com.gey.hbase.helper.HBaseHelper;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.mapreduce.MultiTableOutputFormat;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import java.io.IOException;


/**
 * @author ly
 * @date 2019/7/24 13:59
 * @description
 */
public class HBaseMultiTableOutputApp {

    public static class HBaseMultiTableOutputMapper extends Mapper {
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] splits = value.toString().split("\t");
            String createdDate = splits[1];
            String enable ="1";
            String id = splits[4];
            String uid = splits[5];
            //生成rowkey
            String rk = HBaseHelper.getRowkey(id,uid);

            String s = id+"\t"+uid+"\t"+createdDate+"\t"+enable;

            context.write(new Text(rk),new Text(s));
        }
    }

    public static class HBaseMultiTableOutputReducer extends Reducer {
        //我这里是需要根据id取模,然后根据取模的值将数据存入对应的表
        ImmutableBytesWritable userTb0 = null;
        ImmutableBytesWritable userTb1 = null;
        ImmutableBytesWritable userTb2 = null;
        ImmutableBytesWritable userTb3 = null;
        ImmutableBytesWritable userTb4 = null;
        ImmutableBytesWritable userTb5 = null;
        ImmutableBytesWritable userTb6 = null;
        ImmutableBytesWritable userTb7 = null;
        ImmutableBytesWritable userTb8 = null;
        ImmutableBytesWritable userTb9 = null;

        @Override
        protected void setup(Context context) throws IOException, InterruptedException {
            //初始化表
            userTb0 = new ImmutableBytesWritable(Bytes.toBytes("user_0"));
            userTb1 = new ImmutableBytesWritable(Bytes.toBytes("user_1"));
            userTb2 = new ImmutableBytesWritable(Bytes.toBytes("user_2"));
            userTb3 = new ImmutableBytesWritable(Bytes.toBytes("user_3"));
            userTb4 = new ImmutableBytesWritable(Bytes.toBytes("user_4"));
            userTb5 = new ImmutableBytesWritable(Bytes.toBytes("user_5"));
            userTb6 = new ImmutableBytesWritable(Bytes.toBytes("user_6"));
            userTb7 = new ImmutableBytesWritable(Bytes.toBytes("user_7"));
            userTb8 = new ImmutableBytesWritable(Bytes.toBytes("user_8"));
            userTb9 = new ImmutableBytesWritable(Bytes.toBytes("user_9"));
        }

        @Override
        protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
            for (Text value : values) {
                String[] splits = value.toString().split("\t");
                Put put = new Put(Bytes.toBytes(key.toString()));
                put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("id"), Bytes.toBytes(splits[0]));
                put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("uid"), Bytes.toBytes(splits[1]));
                put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("epochs"), Bytes.toBytes(splits[3]));
                put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("time"), Bytes.toBytes(splits[2]));
                //对id%10
                Long ret = Long.valueOf(splits[0]) % 10;
                if (ret  == 0){
                    context.write(userTb0,put);
                }else if(ret  == 1){
                    context.write(userTb1,put);
                }else if(ret  == 2){
                    context.write(userTb2,put);
                }else if(ret  == 3){
                    context.write(userTb3,put);
                }else if(ret  == 4){
                    context.write(userTb4,put);
                }else if(ret  == 5){
                    context.write(userTb5,put);
                }else if(ret  == 6){
                    context.write(userTb6,put);
                }else if(ret  == 7){
                    context.write(userTb7,put);
                }else if(ret  == 8){
                    context.write(userTb8,put);
                }else if(ret  == 9){
                    context.write(userTb9,put);
                }
            }
        }
    }

    public static void main(String[] args) throws Exception{

        Configuration conf = new Configuration();
        conf.set("hbase.zookeeper.quorum","192.168.32.101,192.168.32.102,192.168.32.103");
        conf.set("hbase.zookeeper.port", "2181");
        conf.set("zookeeper.znode.parent","/hbase");

        //创建job
        Job job = Job.getInstance(conf, "HBaseMultiTableOutputApp");
        //设置job的处理类
        job.setJarByClass(HBaseMultiTableOutputApp.class);


        job.setMapperClass(HBaseMultiTableOutputMapper.class);
        job.setReducerClass(HBaseMultiTableOutputReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);

        // 设置输入和输出格式
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(MultiTableOutputFormat.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));

        boolean result = job.waitForCompletion(true);
        System.exit(result?1:0);

    }
}

思考:本来我这里不想用Reducer只用Mapper的,但是不行,报错。。也不知道问题出在哪儿,等有空再来研究研究。。以上是清洗到多个Hbase表。。

如果是清洗到一张表的话,就只需要Mapper即可,直接上代码:

import com.gey.hbase.helper.HBaseHelper;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import java.io.IOException;

/**
 * @author ly
 * @date 2019/6/28 09:47
 * @description
 */
public class HDFS2HBaseApp {
    public static class HDFS2HBaseMapper  extends Mapper {

        ImmutableBytesWritable rowkey = new ImmutableBytesWritable();

        private static final String ENABLE_TRUE="true";
        private static final String ENABLE_FALSE="false";

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] splits = value.toString().split("\t");
            String createdDate = splits[1];
            String enable = "1";
            String id = splits[4];
            String uid = splits[5];
            
            String rk = HBaseHelper.getRowkey(id,uid);
            rowkey.set(Bytes.toBytes(rk));

            Put put = new Put(Bytes.toBytes(rk));
            put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("id"), Bytes.toBytes(id));
            put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("uid"), Bytes.toBytes(uid));
            put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("epochs"), Bytes.toBytes(enable));
            put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("time"), Bytes.toBytes(createdDate));
            context.write(rowkey, put);
        }
    }

    public static void main(String[] args) throws Exception{
        //创建Configuration
        Configuration configuration = new Configuration();        
        configuration.set("hbase.zookeeper.quorum","192.168.32.101,192.168.32.102,192.168.32.103");
        configuration.set("hbase.zookeeper.port", "2181");
        configuration.set("zookeeper.znode.parent","/hbase");

        //创建job
        Job job = Job.getInstance(configuration, "HDFS2HBaseApp");
        //设置job的处理类
        job.setJarByClass(HDFS2HBaseApp.class);

        job.setMapperClass(HDFS2HBaseMapper.class);
        job.setMapOutputKeyClass(ImmutableBytesWritable.class);
        job.setMapOutputValueClass(Put.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));

        TableMapReduceUtil.initTableReducerJob(args[1],null,job);
        job.setNumReduceTasks(1);

        boolean result = job.waitForCompletion(true);
        System.exit(result?1:0);
    }
}

注意:如果是放到CDH环境的集群上跑,注意在yarn上配置一下hbase的jar所在路径,不然会报错:Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/hbase/io/ImmutableBytesWritable

err.png

解决方法:
在Yarn的配置页面,输入“hadoop-env”,在右侧中填入hbase路径:

HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/lib/hbase/lib/*
classpath1.png

保存后,继续输入“yarn.application.”,在右侧添加hbase路径,如下图所示:

classpath2.png

然后重启就OK了。。

欢迎大家留言讨论
内容将同步到微信公众号,欢迎关注微信公众号:LearnBigData


qrcode.jpg

你可能感兴趣的:(MapReduce将HDFS数据清洗到多个Hbase表中)