1.Pymongo 安装
安装pymongo:
pip install pymongo
PyMongo是驱动程序,使python程序能够使用Mongodb数据库,使用python编写而成;
2.Pymongo 方法
insert_one():插入一条记录;
insert():插入多条记录;
find_one():查询一条记录,不带任何参数返回第一条记录,带参数则按条件查找返回;
find():查询多条记录,不带参数返回所有记录,带参数按条件查找返回;
count():查看记录总数;
create_index():创建索引;
update_one():更新匹配到的第一条数据;
update():更新匹配到的所有数据;
remove():删除记录,不带参表示删除全部记录,带参则表示按条件删除;
delete_one():删除单条记录;
delete_many():删除多条记录;
3.Pymongo 中的操作
查看数据库
from pymongo import MongoClient
connect = MongoClient(host='localhost', port=27017, username="root", password="123456")
connect = MongoClient('mongodb://localhost:27017/', username="root", password="123456")
print(connect.list_database_names())
获取数据库实例
test_db = connect['test']
获取collection实例
collection = test_db['students']
插入一行document, 查询一行document,取出一行document的值
from pymongo import MongoClient
from datetime import datetime
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
# 构建document
document = {"author": "Mike", "text": "My first blog post!", "tags": ["mongodb", "python", "pymongo"], "date": datetime.now()}
# 插入document
one_insert = collection.insert_one(document=document)
print(one_insert.inserted_id)
# 通过条件过滤出一条document
one_result = collection.find_one({"author": "Mike"})
# 解析document字段
print(one_result, type(one_result))
print(one_result['_id'])
print(one_result['author'])
注意:如果需要通过id查询一行document,需要将id包装为ObjectId类的实例对象
from bson.objectid import ObjectId
collection.find_one({'_id': ObjectId('5c2b18dedea5818bbd73b94c')})
插入多行documents, 查询多行document, 查看collections有多少行document
from pymongo import MongoClient
from datetime import datetime
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
documents = [{"author": "Mike","text": "Another post!","tags": ["bulk", "insert"], "date": datetime(2009, 11, 12, 11, 14)},
{"author": "Eliot", "title": "MongoDB is fun", "text": "and pretty easy too!", "date": datetime(2009, 11, 10, 10, 45)}]
collection.insert_many(documents=documents)
# 通过条件过滤出多条document
documents = collection.find({"author": "Mike"})
# 解析document字段
print(documents, type(documents))
print('*'*300)
for document in documents:
print(document)
print('*'*300)
result = collection.count_documents({'author': 'Mike'})
print(result)
范围比较查询
from pymongo import MongoClient
from datetime import datetime
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
# 通过条件过滤时间小于datetime(2019, 1,1,15,40,3) 的document
documents = collection.find({"date": {"$lt": datetime(2019, 1,1,15,40,3)}}).sort('date')
# 解析document字段
print(documents, type(documents))
print('*'*300)
for document in documents:
print(document)
创建索引
from pymongo import MongoClient
import pymongo
from datetime import datetime
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
# 创建字段索引
collection.create_index(keys=[("name", pymongo.DESCENDING)], unique=True)
# 查询索引
result = sorted(list(collection.index_information()))
print(result)
document修改
from pymongo import MongoClient
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
result = collection.update({'name': 'robby'}, {'$set': {"name": "Petter"}})
print(result)
注意:还有update_many()方法
document删除
from pymongo import MongoClient
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
result = collection.delete_one({'name': 'Petter'})
print(result.deleted_count)
注意:还有delete_many()方法
4.MongoDB ODM 详解
MongoDB ODM 与 Django ORM使用方法类似;
MongoEngine是一个对象文档映射器,用Python编写,用于处理MongoDB;
MongoEngine提供的抽象是基于类的,创建的所有模型都是类;
# 安装mongoengine
pip install mongoengine
mongoengine使用的字段类型
BinaryField
BooleanField
ComplexDateTimeField
DateTimeField
DecimalField
DictField
DynamicField
EmailField
EmbeddedDocumentField
EmbeddedDocumentListField
FileField
FloatField
GenericEmbeddedDocumentField
GenericReferenceField
GenericLazyReferenceField
GeoPointField
ImageField
IntField
ListField:可以将自定义的文档类型嵌套
MapField
ObjectIdField
ReferenceField
LazyReferenceField
SequenceField
SortedListField
StringField
URLField
UUIDField
PointField
LineStringField
PolygonField
MultiPointField
MultiLineStringField
MultiPolygonField
5.使用mongoengine创建数据库连接
from mongoengine import connect
conn = connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin')
print(conn)
connect(db = None,alias ='default',** kwargs );
db:要使用的数据库的名称,以便与connect兼容;
host :要连接的mongod实例的主机名;
port :运行mongod实例的端口;
username:用于进行身份验证的用户名;
password:用于进行身份验证的密码;
authentication_source :要进行身份验证的数据库;
构建文档模型,插入数据
from mongoengine import connect, \
Document, \
StringField,\
IntField, \
FloatField,\
ListField, \
EmbeddedDocumentField,\
DateTimeField, \
EmbeddedDocument
from datetime import datetime
# 嵌套文档
class Score(EmbeddedDocument):
name = StringField(max_length=50, required=True)
value = FloatField(required=True)
class Students(Document):
choice = (('F', 'female'),
('M', 'male'),)
name = StringField(max_length=100, required=True, unique=True)
age = IntField(required=True)
hobby = StringField(max_length=100, required=True, )
gender = StringField(choices=choice, required=True)
# 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段
score = ListField(EmbeddedDocumentField(Score))
time = DateTimeField(default=datetime.now())
if __name__ == '__main__':
connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin')
math_score = Score(name='math', value=94)
chinese_score = Score(name='chinese', value=100)
python_score = Score(name='python', value=99)
for i in range(10):
students = Students(name='robby{}'.format(i), age=int('{}'.format(i)), hobby='read', gender='M', score=[math_score, chinese_score, python_score])
students.save()
查询数据
from mongoengine import connect, \
Document, \
StringField,\
IntField, \
FloatField,\
ListField, \
EmbeddedDocumentField,\
DateTimeField, \
EmbeddedDocument
from datetime import datetime
# 嵌套文档
class Score(EmbeddedDocument):
name = StringField(max_length=50, required=True)
value = FloatField(required=True)
class Students(Document):
choice = (('F', 'female'),
('M', 'male'),)
name = StringField(max_length=100, required=True, unique=True)
age = IntField(required=True)
hobby = StringField(max_length=100, required=True, )
gender = StringField(choices=choice, required=True)
# 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段
score = ListField(EmbeddedDocumentField(Score))
time = DateTimeField(default=datetime.now())
if __name__ == '__main__':
connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin')
first_document = Students.objects.first()
all_document = Students.objects.all()
# 如果只有一条,也可以使用get
specific_document = Students.objects.filter(name='robby3')
print(first_document.name, first_document.age, first_document.time)
for document in all_document:
print(document.name)
for document in specific_document:
print(document.name, document.age)
修改、更新、删除数据
from mongoengine import connect, \
Document, \
StringField,\
IntField, \
FloatField,\
ListField, \
EmbeddedDocumentField,\
DateTimeField, \
EmbeddedDocument
from datetime import datetime
# 嵌套文档
class Score(EmbeddedDocument):
name = StringField(max_length=50, required=True)
value = FloatField(required=True)
class Students(Document):
choice = (('F', 'female'),
('M', 'male'),)
name = StringField(max_length=100, required=True, unique=True)
age = IntField(required=True)
hobby = StringField(max_length=100, required=True, )
gender = StringField(choices=choice, required=True)
# 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段
score = ListField(EmbeddedDocumentField(Score))
time = DateTimeField(default=datetime.now())
if __name__ == '__main__':
connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin')
specific_document = Students.objects.filter(name='robby3')
specific_document.update(set__age=100)
specific_document.update_one(set__age=100)
for document in specific_document:
document.name = 'ROBBY100'
document.save()
for document in specific_document:
document.delete()
all():返回所有文档;
all_fields():包括所有字段;
as_pymongo():返回的不是Document实例 而是pymongo值;
average():平均值超过指定字段的值;
batch_size():限制单个批次中返回的文档数量;
clone():创建当前查询集的副本;
comment():在查询中添加注释;
count():计算查询中的选定元素;
create():创建新对象,返回保存的对象实例;
delete():删除查询匹配的文档;
distinct():返回给定字段的不同值列表;
嵌入式文档查询的方法
count():列表中嵌入文档的数量,列表的长度;
create():创建新的嵌入式文档并将其保存到数据库中;
delete():从数据库中删除嵌入的文档;
exclude(** kwargs ):通过使用给定的关键字参数排除嵌入的文档来过滤列表;
first():返回列表中的第一个嵌入文档;
get():检索由给定关键字参数确定的嵌入文档;
save():保存祖先文档;
update():使用给定的替换值更新嵌入的文档;