Smith-Waterman 算法(不含回溯)

1.基本算法(摘自维基百科):

1.1空位权值恒定模型算法

空位权值恒定模型算法

1.2通用算法

通用模型算法

其中H(i,j)是最终的得分矩阵。F(i,j)和E(i,j)矩阵分别用来存储在两条比对序列上开辟空位延伸比对的消耗(cost)。o代表第一个空位的罚分值,e代表延伸时的罚分值。
(原文内容:In (3) and (4), o denotes the gap opening penalty, while e represents the gap extension penalty. The matrices F(i, j) and E(i, j) contain the trace of opening and extending a gap, respectively. F(i, j) stores the cost for opening a gap and extending a gap on sequence x, while E(i, j) stores the cost for opening a gap and extending a gap on sequence y)

2.举例说明:

比对序列为:A = TGTTACGG,B = GGTTGACTA

2.1确定置换矩阵和空位罚分办法

置换矩阵s(ai,bj)= {+3,ai==bj }
           {-3,ai!=bj }

即碱基匹配时分数+3,不匹配时分数-3

空位罚分Wk=(k-1)+2

即第一个空位得分-2,随后得分递增减1,即连续两个空位得分-3,连续三个空位得分-4...

2.2创建矩阵并初始化

需要创建的矩阵有H(得分矩阵),E(B序列空位延伸罚分矩阵),F(A序列空位延伸罚分矩阵)。

在初始化时一般会在H矩阵的最左上方空位赋一个初值(8),右侧值和下侧值为拓展空位罚分的数值。

(H矩阵初始化)

              (Matrix H)
            |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
         |8 |6 |5 |4 |3 |2 |1 |0 |0 |
    G    |6 |x |x |x |x |x |x |x |x |
    G    |5 |x |x |x |x |x |x |x |x |
    T    |4 |x |x |x |x |x |x |x |x |
    T    |3 |x |x |x |x |x |x |x |x |
    G    |2 |x |x |x |x |x |x |x |x |
    A    |1 |x |x |x |x |x |x |x |x |
    C    |0 |x |x |x |x |x |x |x |x |
    T    |0 |x |x |x |x |x |x |x |x |
    A    |0 |x |x |x |x |x |x |x |x |
    
   (B)

(E矩阵初始化)

              (Matrix E)
            |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
         |  |  |  |  |  |  |  |  |  |
    G    |  |0 |0 |0 |0 |0 |0 |0 |0 |
    G    |  |x |x |x |x |x |x |x |x |
    T    |  |x |x |x |x |x |x |x |x |
    T    |  |x |x |x |x |x |x |x |x |
    G    |  |x |x |x |x |x |x |x |x |
    A    |  |x |x |x |x |x |x |x |x |
    C    |  |x |x |x |x |x |x |x |x |
    T    |  |x |x |x |x |x |x |x |x |
    A    |  |x |x |x |x |x |x |x |x |
    
   (B)

(F矩阵初始化)

              (Matrix F)
            |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
         |  |  |  |  |  |  |  |  |  |    
    G    |  |0 |x |x |x |x |x |x |x |
    G    |  |0 |x |x |x |x |x |x |x |
    T    |  |0 |x |x |x |x |x |x |x |
    T    |  |0 |x |x |x |x |x |x |x |
    G    |  |0 |x |x |x |x |x |x |x |
    A    |  |0 |x |x |x |x |x |x |x |
    C    |  |0 |x |x |x |x |x |x |x |
    T    |  |0 |x |x |x |x |x |x |x |
    A    |  |0 |x |x |x |x |x |x |x |
    
   (B)

2.3打分

由通用算法的计算式知:
E(0,1)=max(H(0,0)-2=8-2,E(0,0)-1=0-1)=6
E(1,1)=max(H(1,0)-2=6-2,E(1,0)-1=0-1)=4
F(1,0)=max(H(0,0)-2=8-2,F(0,0)-1=0-1)=6
F(1,1)=max(H(0,1)-2=6-2,F(0,1)-1=0-1)=4
H(1,1)=max(0,H(0,0)=8-3,E(1,1),F(1,1))=5
......

第一轮打分后:

(H矩阵)

              (Matrix H)
            |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
         |8 |6 |5 |4 |3 |2 |1 |0 |0 |
    G    |6 |5 |9 |x |x |x |x |x |x |
    G    |5 |3 |x |x |x |x |x |x |x |
    T    |4 |x |x |x |x |x |x |x |x |
    T    |3 |x |x |x |x |x |x |x |x |
    G    |2 |x |x |x |x |x |x |x |x |
    A    |1 |x |x |x |x |x |x |x |x |
    C    |0 |x |x |x |x |x |x |x |x |
    T    |0 |x |x |x |x |x |x |x |x |
    A    |0 |x |x |x |x |x |x |x |x |
    
   (B)

(E矩阵)

              (Matrix E)
            |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
         |  |  |  |  |  |  |  |  |  |  
    G    |  |0 |0 |0 |0 |0 |0 |0 |0 |
    G    |  |6 |4 |3 |2 |1 |0 |0 |0 |
    T    |  |5 |3 |7 |x |x |x |x |x |
    T    |  |4 |x |x |x |x |x |x |x |
    G    |  |3 |x |x |x |x |x |x |x |
    A    |  |2 |x |x |x |x |x |x |x |
    C    |  |1 |x |x |x |x |x |x |x |
    T    |  |0 |x |x |x |x |x |x |x |
    A    |  |0 |x |x |x |x |x |x |x |
    
   (B)

(F矩阵)

              (Matrix F)
         |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
    G    |0 |6 |5 |4 |3 |2 |1 |0 |
    G    |0 |4 |3 |x |x |x |x |x |
    T    |0 |3 |2 |x |x |x |x |x |
    T    |0 |2 |x |x |x |x |x |x |
    G    |0 |1 |x |x |x |x |x |x |
    A    |0 |0 |x |x |x |x |x |x |
    C    |0 |0 |x |x |x |x |x |x |
    T    |0 |0 |x |x |x |x |x |x |
    A    |0 |0 |x |x |x |x |x |x |
    
   (B)

继续计算直到完整填充......

(H矩阵)

              (Matrix H)
            |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
         |8 |6 |5 |4 |3 |2 |1 |0 |0 |
    G    |6 |5 |9 |7 |6 |5 |4 |4 |3 |
    G    |5 |3 |8 |6 |5 |4 |3 |7 |7 |
    T    |4 |8 |6 |11|9 |9 |8 |7 |6 |
    T    |3 |7 |x |x |x |x |x |x |x |
    G    |2 |5 |x |x |x |x |x |x |x |
    A    |1 |4 |x |x |x |x |x |x |x |
    C    |0 |3 |x |x |x |x |x |x |x |
    T    |0 |3 |x |x |x |x |x |x |x |
    A    |0 |x |x |x |x |x |x |x |x |
    
   (B)

(E矩阵)

              (Matrix E)
         |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
    G    |0 |0 |0 |0 |0 |0 |0 |0 |
    G    |6 |4 |3 |2 |1 |0 |0 |0 |
    T    |5 |3 |7 |5 |4 |3 |2 |2 |
    T    |4 |2 |6 |4 |3 |2 |1 |5 |
    G    |3 |6 |x |x |x |x |x |x |
    A    |2 |5 |x |x |x |x |x |x |
    C    |1 |4 |x |x |x |x |x |x |
    T    |0 |3 |x |x |x |x |x |x |
    A    |0 |2 |x |x |x |x |x |x |
         |0 |1 |x |x |x |x |x |x |
    
   (B)

(F矩阵)

              (Matrix F)
         |T |G |T |T |A |C |G |G |   (A)
   ------------------------------------------
    G    |0 |6 |5 |4 |3 |2 |1 |0 |0 |
    G    |0 |4 |3 |7 |6 |5 |4 |3 |2 |
    T    |0 |3 |2 |6 |5 |4 |3 |2 |5 |
    T    |0 |2 |6 |5 |7 |9 |8 |7 |6 |
    G    |0 |1 |x |x |x |x |x |x |x |
    A    |0 |0 |x |x |x |x |x |x |x |
    C    |0 |0 |x |x |x |x |x |x |x |
    T    |0 |0 |x |x |x |x |x |x |x |
    A    |0 |0 |x |x |x |x |x |x |x |
    
   (B)

这里不再计算,留给读者自己验证……


参考资料:

1.Optimized and Portable FPGA-Based Systolic Cell Architecture for Smith–Waterman-Based DNA Sequence Alignment

2.Wiki-en

你可能感兴趣的:(Smith-Waterman 算法(不含回溯))