「深度学习之优化算法」(五)差分进化算法

1. 差分进化算法简介

(以下描述,均不是学术用语,仅供大家快乐的阅读)

差分进化算法(Differential Evolution Algorithm,DE)是一种基于群体的进化算法,它模拟了群体中的个体的合作与竞争的过程。算法原理简单,控制参数少,只有交叉概率和缩放比例因子,鲁棒性强,易于实现。

差分进化算法中,每一个个体的基因表示待求问题的一个候选解。每次迭代将先进行变异操作,选择一个或多个个体的基因作为基,然后选择不同的个体的差分来构成差分基因,最后将作为基的基因与差分基因相加来得出新的个体。交叉操作将新的个体将于父代的对应个体交叉,然后进行选择操作,比较交叉后的个体与父代的对应个体,选择较优的个体保留至下一代。在迭代完成之后将选择种群中最优个体的基因作为解。

差分进化算法可以算是我所使用过的优化算法中大魔王级别的算法,虽然它每个方面都没有强到离谱,但是综合起来的效果好于大多数算法。它就像一个每个科目都能考到90分(百分制)的学生,虽然没门课都不是最优秀的

你可能感兴趣的:(算法,算法,深度学习,人工智能,差分进化算法,优化算法)