【动态规划】简单多状态dp问题(1)打家劫舍问题

打家劫舍问题

文章目录

  • 【动态规划】简单多状态dp问题(1)打家劫舍问题
    • 1. 按摩师(打家劫舍Ⅰ)
      • 1.1 题目解析
      • 1.2 算法原理
        • 1.2.1 状态表示
        • 1.2.2 状态转移方程
        • 1.2.3 初始化
        • 1.2.4 填表顺序
        • 1.2.5 返回值
      • 1.3 编写代码
    • 2. 打家劫舍Ⅱ
      • 2.1 题目解析
      • 2.2 算法原理
        • 2.2.1 状态表示
        • 2.2.2 状态转移方程
        • 2.2.3 初始化
        • 2.2.4 填表顺序
        • 2.2.5 返回值
      • 2.3 编写代码
    • 3. 删除并获得点数
      • 3.1 题目解析
      • 3.2 算法原理
        • 3.2.1 状态表示
        • 3.2.2 状态转移方程
        • 3.2.3 初始化
        • 3.2.4 填表顺序
        • 3.2.5 返回值
      • 3.3 编写代码
    • 4. 粉刷房子
      • 4.1 题目解析
      • 4.2 算法原理
        • 4.2.1 状态表示
        • 4.2.2 状态转移方程
        • 4.2.3 初始化
        • 4.2.4 填表顺序
        • 4.2.5 返回值
      • 4.3 编写代码

【动态规划】简单多状态dp问题(1)打家劫舍问题

1. 按摩师(打家劫舍Ⅰ)

传送门:面试题 17.16. 按摩师

题目:

【动态规划】简单多状态dp问题(1)打家劫舍问题_第1张图片

1.1 题目解析

【动态规划】简单多状态dp问题(1)打家劫舍问题_第2张图片

越难的dp问题,看示例只能起到了解题目的效果,一般推不出啥普遍的规律,所以接下来就是我们的算法原理,通过动归的思想去理解,才会豁然开朗!

1.2 算法原理

1.2.1 状态表示

我们需要通过经验 + 题目要求去决定状态表示:

  1. 根据题目的意境以及数据结构,我们得出需要建立一维的dp表(大小为 n)
    • 对于为什么用一维,首先这道题数据结构为一维的,而一维如果确实可以解决问题就没有必要上升到二维
  2. 经验:以某个坐标为结尾或者以某个坐标为起点去研究题目问题!
    • 此题用的是“结尾”

再根据经验,一般dp表的其中一值就应该是答案!

  • 所以含义应该就是“最长预约时长”

综合得到状态表示:dp[i]表示就是起点到坐标为 i 的位置这些天以来的最长预约时长

而这道题,与之前做过的题不一样的是,一个坐标的状态有两种情况,需要我们继续细化

  1. 接单
  2. 不接单

在之前的题目里,我们到达一个坐标并无其他选择,而现在有~

  • 而我们需要有两个dp表来细化表示这两个状态,因为一个dp表是无法表示这两种状态的,这就是简单的多状态dp问题的关键!

【动态规划】简单多状态dp问题(1)打家劫舍问题_第3张图片

  • 其中 f 和 g 对应中学阶段的函数 f 和函数 g 的这种常用的写法
  • 当然也可以写成二维数组(n × 2)

所以,最终的状态表示为:

f[i]表示的是,从起点到 i 坐标的这些天内,i这一天接单的情况下的最长预约时间

g[i]表示的是,从起点到 i 坐标的这些天内,i这一天不接单的情况下的最长预约时间

1.2.2 状态转移方程

同样的套路,我们需要根据已确定的dp表的值来推导 f[i] 和 g[i] 的值,并且牢记他们的状态表示!

  1. 我们以坐标 i 为结尾
  2. 根据“最近一步”去划分问题

“最近一步”可以理解为“必然事件”

  • 此题的“必然事件”就是,到达坐标 i 之前,必然要先到达坐标 i - 1

【动态规划】简单多状态dp问题(1)打家劫舍问题_第4张图片

  1. 这一天如果接单的话,那么前一天就必须不接单,那么预约时长为今天的预约时长nums[i]加上,上一天的不接单情况下的最长预约时长g[i - 1]
  2. 这一天如果不接单的话,那么前一天可以接单,也可以不接单,那么预约时长则是,前一天接单情况和不接单情况的最长预约时长中的较大值

而1代表着f表怎么填,2代表着g表怎么填

所以得出状态转移方程:

f[i] = nums[i] + g[i - 1];

g[i] = max{f[i - 1], g[i - 1]};

1.2.3 初始化

这道题可以用假数据的方法,但是没有必要,因为我们只需要初始化第一个值就行了~

  1. 如果第一天接单,则预约时长就是nums[0]
  2. 如果第一天不接单,则预约时长就是0

1.2.4 填表顺序

从左往右两个表一起填

【动态规划】简单多状态dp问题(1)打家劫舍问题_第5张图片

1.2.5 返回值

返回的就是起点到终点,即所有天以来的最长预约时长,即f[n - 1]或者g[n - 1]

  • 最后一天两种可能都有,所以返回其较大值!

1.3 编写代码

  • 根据算法原理编写代码即可:
  1. 创建dp表
  2. 初始化,处理边界问题
  3. 填表
  4. 返回值
class Solution {
    public int massage(int[] nums) {
        //1. 创建dp表
        //2. 初始化
        //3. 填表
        //4. 返回值
        int n = nums.length;
        if(n == 0) {
            return 0;
        }
        int[] f = new int[n];
        int[] g = new int[n];
        f[0] = nums[0];
        for(int i = 1; i < n; i++) {
            f[i] = nums[i] + g[i - 1];
            g[i] = Math.max(f[i - 1], g[i - 1]);
        }
        return Math.max(f[n - 1], g[n - 1]);  
    }
}

时空复杂度都为:O(N)

【动态规划】简单多状态dp问题(1)打家劫舍问题_第6张图片

2. 打家劫舍Ⅱ

传送门:力扣213. 打家劫舍 II

题目:

【动态规划】简单多状态dp问题(1)打家劫舍问题_第7张图片

2.1 题目解析

【动态规划】简单多状态dp问题(1)打家劫舍问题_第8张图片

【动态规划】简单多状态dp问题(1)打家劫舍问题_第9张图片

越难的dp问题,看示例只能起到了解题目的效果,一般推不出啥普遍的规律,所以接下来就是我们的算法原理,通过动归的思想去理解,才会豁然开朗!

2.2 算法原理

算法原理基本跟上一道题一致,只不过这一次成环了~

而并不想在状态转移方程中去判断这种情况,因为这是不现实的,因为f 表和g 表到达n - 2下标的时候,我们并不能确定n - 2坐标对应的情况,起点是否“偷”与“不偷”,并且我们也不能人为规定(影响最终结果)

  • 而我们也不能以环型的形式去创建dp表!

所以我们需要一个**预处理**的阶段:(往已知的解法靠拢,化未知为已知)

我们细化第一天的状态:(重点理解)

  1. 偷,则次日和最后一天不能偷,相当于对[2, n - 2]进行一次打家劫舍,最终结果加上nums[0]
  2. 不偷,则最后一天无所谓,相当于对[1, n - 1]进行一次打家劫舍
    【动态规划】简单多状态dp问题(1)打家劫舍问题_第10张图片

而我们则需要去封装,“一次打家劫舍”的方法!

2.2.1 状态表示

我们需要通过经验 + 题目要求去决定状态表示:

  1. 根据题目的意境以及数据结构,我们得出需要建立一维的dp表(大小为 不一定,由传入的范围决定)
    • 本题有n-2大小,n-1大小
  2. 经验:以某个坐标为结尾或者以某个坐标为起点去研究题目问题!
    • 此题用的是“结尾”

再根据经验,一般dp表的其中一值就应该是答案!

  • 所以含义应该就是“最长预约时长”

综合得到状态表示:dp[i]表示就是起点到坐标为 i 的位置偷到的最大钱数

而这道题,与之前做过的题不一样的是,一个坐标的状态有两种情况,需要我们继续细化

  1. 不偷

【动态规划】简单多状态dp问题(1)打家劫舍问题_第11张图片

所以,最终的状态表示为:

f[i]表示的是,从起点到 i 坐标的这些房间,i这个房间偷的情况下的最大钱数

g[i]表示的是,从起点到 i 坐标的这些房间,i这个房间不偷的情况下的最大钱数

2.2.2 状态转移方程

同样的套路,我们需要根据已确定的dp表的值来推导 f[i] 和 g[i] 的值,并且牢记他们的状态表示!

  1. 我们以坐标 i 为结尾
  2. 根据“最近一步”去划分问题

“最近一步”可以理解为“必然事件”

  • 此题的“必然事件”就是,到达坐标 i 之前,必然要先到达坐标 i - 1

【动态规划】简单多状态dp问题(1)打家劫舍问题_第12张图片

  1. 这个房间如果偷的话,那么前一房间就必须不偷,那么金额为今天的钱额nums[i]加上,上一个房间的不偷情况下的最大金额g[i - 1]
  2. 这个房间如果不偷的话,那么前一个房间可以偷,也可以不偷,那么最大金额则是,前一个房间的偷情况和不偷情况的最大金额中的较大值

而1代表着f表怎么填,2代表着g表怎么填

所以得出状态转移方程:

f[i] = nums[i] + g[i - 1];

g[i] = max{f[i - 1], g[i - 1]};

2.2.3 初始化

本题由于要两次建表,而两次建表的填表起始点和终点都不一样
【动态规划】简单多状态dp问题(1)打家劫舍问题_第13张图片

  1. 第一个房间偷:
    1. f[2] = nums[2]
    2. g[2] = 0
  2. 第一个房间偷:
    1. f[1] = nums[1]
    2. g[2]

2.2.4 填表顺序

从左往右两个表一起填

  1. 第一个房间偷:从2开始填到n - 2
  2. 第二个房间偷:从1开始填到n - 1

【动态规划】简单多状态dp问题(1)打家劫舍问题_第14张图片

2.2.5 返回值

  1. 第一个房间偷:最大值应该为f[n - 2]和g[n - 2]的较大值,再加上nums[0]
  2. 第一个房间偷:最大值应该为f[n - 1]和g[n - 2]的较大值

2.3 编写代码

一次打家劫舍操作的方法封装:

  • 由于要与nums对应,所以我选择不限制dp表的大小,而是限制填表范围!
public int oneRob(int[] nums, int left, int right) {
    int n = nums.length;
    int[] f = new int[n];
    int[] g = new int[n];
    f[left] = nums[left];
    for(int i = left + 1; i <= right; i++) {
        f[i] = nums[i] + g[i - 1];
        g[i] = Math.max(f[i - 1], g[i - 1]);
    }
    return Math.max(f[right], g[right]);
}

核心方法:

  • 对于元素太少的边界情况要提前处理!
class Solution {
    public int rob(int[] nums) {
        int n = nums.length;
        if(n == 1) {
            return nums[0];
        }
        if(n == 2) {
            return Math.max(nums[0], nums[1]);
        }
        int yes = nums[0] + oneRob(nums, 2, n - 2);
        int no = oneRob(nums, 1, n - 1);
        return Math.max(yes, no);
    }
}
  • 注意下标对应!

时空复杂度都为:O(N)
【动态规划】简单多状态dp问题(1)打家劫舍问题_第15张图片

3. 删除并获得点数

传送门:力扣740. 删除并获得点数

题目:

【动态规划】简单多状态dp问题(1)打家劫舍问题_第16张图片

3.1 题目解析

【动态规划】简单多状态dp问题(1)打家劫舍问题_第17张图片

【动态规划】简单多状态dp问题(1)打家劫舍问题_第18张图片

越难的dp问题,看示例只能起到了解题目的效果,一般推不出啥普遍的规律,所以接下来就是我们的算法原理,通过动归的思想去理解,才会豁然开朗!

3.2 算法原理

首先,我们需要将这些数据进行一个排序,这是很容易想到的,这样可以很好的观察到数据的发布情况(值为x的数的个数也明显)

【动态规划】简单多状态dp问题(1)打家劫舍问题_第19张图片

而这样也不够,我们怎么往动态规划的方向去靠拢呢

  • 现在还不能创建出dp表,因为如果按照nums的大小创建的话,那么下标对应的元素的状态也是不好确定的,例如:
    1. 值相同的元素含义相同?
    2. x-1和x-2不一定存在,且无法确认其下标

所以很快就能想到以下操作:

  • 相同的元素“融合起来”
    【动态规划】简单多状态dp问题(1)打家劫舍问题_第20张图片

  • 值与下标有关(哈希思想):

    • 顺手解决如何找到x-1和x+1的问题
      【动态规划】简单多状态dp问题(1)打家劫舍问题_第21张图片
  • 对于不存在的值,默认对应值为0
    【动态规划】简单多状态dp问题(1)打家劫舍问题_第22张图片

猛地一看!

  • 是不是就是打家劫舍问题!

问题:这样岂不是会选到不存在的数字?

  • 对,但是没有关系,因为选择到不存在的数字,最终结果的情况中,不可能选择到不存在的数,因为这道题,nums元素都大于等于1,所以选择到不存在数字的时候,就相当于获得点数为0,反而导致我们不能选择一些高点数的东西
    1. 相当于不选
    2. 相当于自找苦头
  • 所以在此情况下,选择不存在的数是自找苦吃的!
  • 而如果nums元素的值没有正负限制,那么也没关系,因为选择这个不存在的数字,一样不会促进后续去获得点数,因为我们“不限制其选择不存在的数字”的情景下,他的最优解本来就可以不选那些大的负数即可,不需要靠选择不存在的数字来限制其不能选

即,不限制其选择不存在的数字,是完全考虑选择在不存在数字的情况下的强大的最优解

3.2.1 状态表示

我们需要通过经验 + 题目要求去决定状态表示:

  1. 根据题目的意境以及数据结构,我们得出需要建立一维的dp表(大小为输入案例nums数组的最大值 + 1,即**1e4 + 1**:科学计数法)
    • 因为1e4也要对应到1e4下标
  2. 经验:以某个坐标为结尾或者以某个坐标为起点去研究题目问题!
    • 此题用的是“结尾”

再根据经验,一般dp表的其中一值就应该是答案!

  • 所以含义应该就是“最大点数”

综合得到状态表示:dp[i]表示就是起点到坐标为 i 的位置能获得的最大点数

而这道题,与之前做过的题不一样的是,一个坐标的状态有两种情况,需要我们继续细化

  1. 不选
    【动态规划】简单多状态dp问题(1)打家劫舍问题_第23张图片

所以,最终的状态表示为:

f[i]表示的是,从起点到 i 坐标的这些数内,i这一个数不选情况下能获得的最大点数

g[i]表示的是,从起点到 i 坐标的这些数内,i这一个数不选的情况下能获得的最大点数

3.2.2 状态转移方程

同样的套路,我们需要根据已确定的dp表的值来推导 f[i] 和 g[i] 的值,并且牢记他们的状态表示!

  1. 我们以坐标 i 为结尾
  2. 根据“最近一步”去划分问题

“最近一步”可以理解为“必然事件”

  • 此题的“必然事件”就是,到达坐标 i 之前,必然要先到达坐标 i - 1
    【动态规划】简单多状态dp问题(1)打家劫舍问题_第24张图片
  1. 这个数如果选的话,那么x - 1就必须不选,那么获得点数为统计数组arr[i]加上,上一天的不选的情况下的能获得的最大点数g[i - 1]
  2. 这个数如果不选的话,那么前一天可以选,也可以不选,那么获得的点数则是,前一天选情况和不选情况的最大点数中的较大值

而1代表着f表怎么填,2代表着g表怎么填

所以得出状态转移方程:

f[i] = arr[i] + g[i - 1];

g[i] = max{f[i - 1], g[i - 1]};

3.2.3 初始化

0这个数是不存在的树,所以选和不选f[0]和g[0]都为0

3.2.4 填表顺序

从左往右两个表一起填

3.2.5 返回值

f[1e4] 和 g[1e4]的较大值

3.3 编写代码

  1. 预处理

  2. 创建dp表

  3. 填表

  4. 返回值

class Solution {
    public int deleteAndEarn(int[] nums) {
        //1. 预处理
        int max = (int)1e4;
        int[] arr = new int[max + 1];
        for(int i = 0; i < nums.length; i++) {
            int index = nums[i];
            arr[index] += index;
        }
        //2. 创建dp表
        //3. 填表
        //4. 返回值
        int[] f = new int[max + 1];
        int[] g = new int[max + 1];
        for(int i = 1; i < max + 1; i++) {
            f[i] = arr[i] + g[i - 1];
            g[i] = Math.max(f[i - 1], g[i - 1]);
        }
        return Math.max(f[max], g[max]);
    }
}

时空复杂度都为:O(N)

【动态规划】简单多状态dp问题(1)打家劫舍问题_第25张图片

4. 粉刷房子

传送门:力扣剑指 Offer II 091. 粉刷房子

题目:

【动态规划】简单多状态dp问题(1)打家劫舍问题_第26张图片

4.1 题目解析

【动态规划】简单多状态dp问题(1)打家劫舍问题_第27张图片

【动态规划】简单多状态dp问题(1)打家劫舍问题_第28张图片

越难的dp问题,看示例只能起到了解题目的效果,一般推不出啥普遍的规律,所以接下来就是我们的算法原理,通过动归的思想去理解,才会豁然开朗!

4.2 算法原理

4.2.1 状态表示

我们需要通过经验 + 题目要求去决定状态表示:

  1. 根据题目的意境以及数据结构,我们得出需要建立二维的dp表(n × 3)
    • 也可以三个一维dp表,只不过在这里为了与costs表对应

【动态规划】简单多状态dp问题(1)打家劫舍问题_第29张图片

  1. 经验:以某个坐标为结尾或者以某个坐标为起点去研究题目问题!
  • 此题用的是“结尾”

再根据经验,一般dp表的其中一值就应该是答案!

  • 所以含义应该就是“最大点数”

综合得到状态表示:dp[i]表示就是起点到坐标为 i 的位置时的这些房子粉刷完的最小花费

而这道题,与之前做过的题不一样的是,一个坐标的状态有三种情况,需要我们继续细化

  1. 绿
    【动态规划】简单多状态dp问题(1)打家劫舍问题_第30张图片

所以,最终的状态表示为:

dp[i] [0]表示的是,从起点到 i 坐标的这些房子内,i这一个房子为红色情况下的最小花费

dp[i] [1]表示的是,从起点到 i 坐标的这些房子内,i这一个房子为蓝色情况下的最小花费

dp[i] [2]表示的是,从起点到 i 坐标的这些房子内,i这一个房子为绿色情况下的最小花费

4.2.2 状态转移方程

同样的套路,我们需要根据已确定的dp表的值来推导 f[i] 和 g[i] 的值,并且牢记他们的状态表示!

  1. 我们以坐标 i 为结尾
  2. 根据“最近一步”去划分问题

“最近一步”可以理解为“必然事件”

  • 此题的“必然事件”就是,到达坐标 i 之前,必然要先到达坐标 i - 1
    【动态规划】简单多状态dp问题(1)打家劫舍问题_第31张图片
  1. 这个房子如果刷红色的话,那么前一个房子只能是蓝色或者绿色,即花费为dp[i] [1]和dp[i] [2]的较小值加上第i个房子刷红色费用costs[i] [0]
  2. 这个房子如果刷蓝色的话,那么前一个房子只能是红色或者绿色,即花费为dp[i] [0]和dp[i] [2]的较小值加上第i个房子刷蓝色费用costs[i] [0]
  3. 这个房子如果刷绿色的话,那么前一个房子只能是红色或者蓝色,即花费为dp[i] [0]和dp[i] [1]的较小值加上第i个房子刷绿色费用costs[i] [0]

而1代表着dp[i] [0]表怎么填,2代表着dp[i] [1]表怎么填,3代表着dp[i] [2]表怎么填

所以得出状态转移方程:

dp[i][0] = min{dp[i][1], dp[i][2]} + costs[i][0];

dp[i][1] = min{dp[i][0], dp[i][2]} + costs[i][1];

dp[i][2] = min{dp[i][0], dp[i][1]} + costs[i][2];

4.2.3 初始化

dp[0] [j] = costs[0] [j];

  • 第一个房间花费就是刷对应墙的花费~

4.2.4 填表顺序

从上到下,三列同时填
【动态规划】简单多状态dp问题(1)打家劫舍问题_第32张图片

4.2.5 返回值

最后一个房间刷红刷蓝刷绿三种情况中的较小值~

4.3 编写代码

class Solution {
    public int minCost(int[][] costs) {
        //1. 创建dp表
        //2. 初始化
        //3. 填表
        //4. 返回值
        int n = costs.length;
        int[][] dp = new int[n][3];
        for(int i = 0; i < 3; i++) {
            dp[0][i] = costs[0][i];
        }
        for(int i = 1; i < n; i++) {
            dp[i][0] = costs[i][0] + Math.min(dp[i - 1][1], dp[i - 1][2]);
            dp[i][1] = costs[i][1] + Math.min(dp[i - 1][0], dp[i - 1][2]);
            dp[i][2] = costs[i][2] + Math.min(dp[i - 1][0], dp[i - 1][1]);
        }
        return Math.min(dp[n - 1][0], Math.min(dp[n - 1][1], dp[n - 1][2]));
    }
}

时空复杂度都为:O(N)

【动态规划】简单多状态dp问题(1)打家劫舍问题_第33张图片

由于此类问题题目较多,分两篇文章讲述,下一篇文章的题目链接(买卖股票问题):

传送门:力扣309. 最佳买卖股票时机含冷冻期

传送门:力扣714. 买卖股票的最佳时机含手续费

传送门:力扣123.买卖股票的最佳时机 III

传送门:力扣188. 买卖股票的最佳时机 IV


文章到此结束!谢谢观看
可以叫我 小马,我可能写的不好或者有错误,但是一起加油鸭

本文代码链接:动态规划03/src/Main.java · 游离态/马拉圈2023年6月 - 码云 - 开源中国 (gitee.com)


你可能感兴趣的:(剑指offer与算法,动态规划,算法,打家劫舍)