【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届

文章目录

    • 前言
    • 一、题目
    • 二、模块初始化
    • 三、代码实现
      • interrupt.h:
      • interrupt.c:
      • main.h:
      • main.c:
    • 四、完成效果
    • 五、总结

前言

一、题目

【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届_第1张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届_第2张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届_第3张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届_第4张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届_第5张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届_第6张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届_第7张图片

二、模块初始化

1.LCD这里不用配置,直接使用提供的资源包就行
2.ADC:开启ADCsingle-ended
3.LED:开启PC8-15,PD2输出模式就行了。
4.定时器:TIM3(按键消抖定时器):PSC:80-1,ARR:10000-1,TIM17(PWM输出定时器):PSC:80,ARR:65535,TIM2:80-1,ARR:0xffffffff
5.i2c:设置PB6,PB7为GPIO_Output模式即可
6.打开串口串行输出输入

三、代码实现

bsp组中共有:
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十三届_第8张图片

interrupt.h:

#ifndef __INTERRUPT_H__
#define __INTERRUPT_H__

#include "main.h"
#include "stdbool.h"

struct keys
{
	bool key_sta;
	unsigned char key_judge;
	bool single_flag;
	unsigned int key_time;
	bool long_flag;
};

#endif

interrupt.c:

#include "interrupt.h"

struct keys key[4] = {0, 0, 0, 0, 0};

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)
{
	if(htim->Instance == TIM3)
	{
		key[0].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
		key[1].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
		key[2].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
		key[3].key_sta = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
		for(unsigned char i = 0; i < 4; i++)
		{
			switch(key[i].key_judge)
			{
				case 0:
				{
					if(key[i].key_sta == 0)
					{
						key[i].key_time = 0;
						key[i].key_judge = 1;
					}
					break;
				}
				case 1:
				{
					if(key[i].key_sta == 0)
					{
						key[i].key_judge = 2;
					}
					else
					{
						key[i].key_judge = 0;
					}
					break;
				}
				case 2:
				{
					if(key[i].key_sta == 1)
					{
						key[i].key_judge = 0;
						if(key[i].key_time <= 100)
						{
							key[i].single_flag = 1;
						}
						if(key[i].key_time > 100)
						{
							key[i].long_flag = 1;
						}
					}
					else
					{
						key[i].key_time++;
					}
					break;
				}
			}
		}
	}
}
/* Captured Values */
uint32_t uwIC2Value1_T2CH2 = 0;
uint32_t uwIC2Value2_T2CH2 = 0;
uint32_t uwLowCapture_T2CH2 = 0;
uint32_t uwHighCapture_T2CH2 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T2CH2 = 0;

/* Frequency Value */
uint32_t uwFrequency_T2CH2 = 0;
double uwDuty_T2CH2 = 0;






void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
	if(htim->Instance == TIM2)
	{
		if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
		{
			if(uhCaptureIndex_T2CH2 == 0)
			{
				/* Get the 1st Input Capture value */
				uwIC2Value1_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
				__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_FALLING);
				uhCaptureIndex_T2CH2 = 1;
			}
			else if(uhCaptureIndex_T2CH2 == 1)
			{
				/* Get the 2nd Input Capture value */
				uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); 
				__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_RISING);
				/* Capture computation */
				if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
				{
					uwHighCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2); 
				}
				else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
				{
					/* 0xFFFF is max TIM1_CCRx value */
					uwHighCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
				}
				else
				{
					/* If capture values are equal, we have reached the limit of frequency
						 measures */
					Error_Handler();
				}
				uhCaptureIndex_T2CH2 = 2;
				uwIC2Value1_T2CH2 = uwIC2Value2_T2CH2;
				/* Frequency computation: for this example TIMx (TIM1) is clocked by
					 APB2Clk */      
			}
			else if(uhCaptureIndex_T2CH2 == 2)
			{
				uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); 
				if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
				{
					uwLowCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2); 
				}
				else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
				{
					/* 0xFFFF is max TIM1_CCRx value */
					uwLowCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
				}
				uwFrequency_T2CH2 = 1000000 / (uwHighCapture_T2CH2 + uwLowCapture_T2CH2);
				uwDuty_T2CH2 = uwHighCapture_T2CH2 * 100.0 / (uwHighCapture_T2CH2 + uwLowCapture_T2CH2);
				uhCaptureIndex_T2CH2 = 0;
			}
		}
	}
}

char RxBuffer[30];
unsigned char BufIndex = 0;
unsigned char Rxdat;

void HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart)
{
	if(huart->Instance == USART1)
	{
		RxBuffer[BufIndex++] = Rxdat;
		HAL_UART_Receive_IT(huart, &Rxdat, 1);
	}
}

main.h:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.h
  * @brief          : Header for main.c file.
  *                   This file contains the common defines of the application.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MAIN_H
#define __MAIN_H

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx_hal.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Exported types ------------------------------------------------------------*/
/* USER CODE BEGIN ET */

/* USER CODE END ET */

/* Exported constants --------------------------------------------------------*/
/* USER CODE BEGIN EC */

/* USER CODE END EC */

/* Exported macro ------------------------------------------------------------*/
/* USER CODE BEGIN EM */

/* USER CODE END EM */

/* Exported functions prototypes ---------------------------------------------*/
void Error_Handler(void);

/* USER CODE BEGIN EFP */

/* USER CODE END EFP */

/* Private defines -----------------------------------------------------------*/

/* USER CODE BEGIN Private defines */
#define DATA 0
#define PARA 1
#define REC 2
#define REC_PA4 3
#define REC_PA5 4
#define MUL 0
#define DIV 1
/* USER CODE END Private defines */

#ifdef __cplusplus
}
#endif

#endif /* __MAIN_H */

main.c:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "interrupt.h"
#include "lcd.h"
#include "stdio.h"
#include "i2c.h"
#include "dadc.h"
#include "stdlib.h"
#include "string.h"
#include "led.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
extern struct keys key[4];
unsigned char eeprom_readData;
unsigned char eeprom_writeData;
char text[30];
extern uint32_t uwFrequency_T2CH2;
extern double uwDuty_T2CH2;
double PA4_Volt[1024] = {0}, PA5_Volt[1024] = {0};
unsigned char DisplayMode;
unsigned char REC_DisplayMode = REC_PA4;
unsigned char X = 1;
unsigned char Y = 1;
unsigned char outputMode = MUL;
unsigned int N_PA4;
unsigned int N_PA5;
double A_PA4 = 0;
double A_PA5 = 0;
double T_PA4 = 0;
double T_PA5 = 0;
double SUM_PA4 = 0;
double SUM_PA5 = 0;
double H_PA4 = 0;
double H_PA5 = 0;
extern char RxBuffer[30];
extern unsigned char BufIndex;
extern unsigned char Rxdat;
unsigned char ScanMode;
unsigned char LED;
unsigned int LEDtick;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void DisposeKey(void);
void LCD_Disp(void);
void Rx_Proc(void);
void LED_Control(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC2_Init();
  MX_TIM2_Init();
  MX_TIM17_Init();
  MX_USART1_UART_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */
	LCD_Init();
	LCD_Clear(Black);
	LCD_SetBackColor(Black);
	LCD_SetTextColor(White);
	getDualADC(&hadc2);
	HAL_Delay(2);
	getDualADC(&hadc2);
	HAL_TIM_Base_Start_IT(&htim3);
	HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
	
	if(eeprom_read(2) == 0x83 && eeprom_read(3) == 0x84 && eeprom_read(4) == 0x85) //²»ÊǵÚÒ»´Î
	{
		X = eeprom_read(1);
		Y = eeprom_read(0);
	}
	else
	{
		eeprom_write(1, X);
		HAL_Delay(10);
		eeprom_write(0, Y);
		HAL_Delay(10);
		eeprom_write(2, 0x83);
		HAL_Delay(10);
		eeprom_write(3, 0x84);
		HAL_Delay(10);
		eeprom_write(4, 0x85);
	}
	__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 * X));
	HAL_TIM_PWM_Start_IT(&htim17, TIM_CHANNEL_1);
	HAL_UART_Receive_IT(&huart1, &Rxdat, 1);
	LED_Disp(0x00);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
		if(BufIndex != 0)
		{
			unsigned char temp = BufIndex;
			HAL_Delay(1);
			if(temp == BufIndex)
				Rx_Proc();
		}
		DisposeKey();
		LCD_Disp();
		LED_Control();
		LED_Disp(LED);
//		sprintf(text, "%.2f%%", uwDuty_T2CH2);
//		LCD_DisplayStringLine(Line1, text);
//		sprintf(text, "%dHz", uwFrequency_T2CH2);
//		LCD_DisplayStringLine(Line2, text);
//		sprintf(text, "%.2f", adc2_in17_AO1 * 3.3 / 4096);
//		LCD_DisplayStringLine(Line3, text);
//		sprintf(text, "%.2f", adc2_in13_AO2 * 3.3 / 4096);
//		LCD_DisplayStringLine(Line4, text);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
  RCC_OscInitStruct.PLL.PLLN = 20;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
void DisposeKey(void)
{
	if(key[0].single_flag)
	{
		LCD_Clear(Black);
		DisplayMode++;
		DisplayMode %= 3;
		key[0].single_flag = 0;
	}
	if(key[1].single_flag)
	{
		if(DisplayMode==PARA)
		{
			X++;
			if(X==5)
				X = 1;
			if(outputMode == MUL)
				__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 * X));
			else
				__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 / X));
			eeprom_write(1, X);
		}
		key[1].single_flag = 0;
	}
	if(key[2].single_flag)
	{
		if(DisplayMode==PARA)
		{
			Y++;
			if(Y==5)
				Y = 1;
			eeprom_write(0, Y);
		}
		key[2].single_flag = 0;
	}
	if(key[3].single_flag)
	{
		if(DisplayMode == DATA)
		{
			getDualADC(&hadc2);
			if(N_PA4 + 1 <= 1000)
			{
				PA4_Volt[N_PA4] = adc2_in17_AO1 * 3.3 / 4096;
				N_PA4++;
				A_PA4 = PA4_Volt[0];
				for(unsigned int i = 0; i < N_PA4; i++)
				{
					if(A_PA4 < PA4_Volt[i])
					{
						A_PA4 = PA4_Volt[i];
					}
				}
				T_PA4 = PA4_Volt[0];
				for(unsigned int i = 0; i < N_PA4; i++)
				{
					if(T_PA4 > PA4_Volt[i])
					{
						T_PA4 = PA4_Volt[i];
					}
				}
				SUM_PA4 = 0;
				for(unsigned int i = 0; i < N_PA4; i++)
				{
					SUM_PA4 += PA4_Volt[i];
				}
				H_PA4 = SUM_PA4 / N_PA4;
			}
			else
			{
				for(unsigned int i = 0; i < 999; i++)
				{
					PA4_Volt[i] = PA4_Volt[i+1];
				}
				PA4_Volt[999] = adc2_in17_AO1 * 3.3 / 4096;
				A_PA4 = PA4_Volt[0];
				for(unsigned int i = 0; i < 1000; i++)
				{
					if(A_PA4 < PA4_Volt[i])
					{
						A_PA4 = PA4_Volt[i];
					}
				}
				T_PA4 = PA4_Volt[0];
				for(unsigned int i = 0; i < 1000; i++)
				{
					if(T_PA4 > PA4_Volt[i])
					{
						T_PA4 = PA4_Volt[i];
					}
				}
				SUM_PA4 = 0;
				for(unsigned int i = 0; i < 1000; i++)
				{
					SUM_PA4 += PA4_Volt[i];
				}
				H_PA4 = SUM_PA4 / N_PA4;
			}
			if(N_PA5 + 1 <= 1000)
			{
				PA5_Volt[N_PA5] = adc2_in13_AO2 * 3.3 / 4096;
				N_PA5++;
				A_PA5 = PA5_Volt[0];
				for(unsigned int i = 0; i < N_PA5; i++)
				{
					if(A_PA5 < PA5_Volt[i])
					{
						A_PA5 = PA5_Volt[i];
					}
				}
				T_PA5 = PA5_Volt[0];
				for(unsigned int i = 0; i < N_PA5; i++)
				{
					if(T_PA5 > PA5_Volt[i])
					{
						T_PA5 = PA5_Volt[i];
					}
				}
				SUM_PA5 = 0;
				for(unsigned int i = 0; i < N_PA5; i++)
				{
					SUM_PA5 += PA5_Volt[i];
				}
				H_PA5 = SUM_PA5 / N_PA5;
			}
			else
			{
				for(unsigned int i = 0; i < 999; i++)
				{
					PA5_Volt[i] = PA5_Volt[i+1];
				}
				PA5_Volt[999] = adc2_in13_AO2 * 3.3 / 4096;
				A_PA5 = PA5_Volt[0];
				for(unsigned int i = 0; i < 1000; i++)
				{
					if(A_PA5 < PA5_Volt[i])
					{
						A_PA5 = PA5_Volt[i];
					}
				}
				T_PA5 = PA5_Volt[0];
				for(unsigned int i = 0; i < 1000; i++)
				{
					if(T_PA5 > PA5_Volt[i])
					{
						T_PA5 = PA5_Volt[i];
					}
				}
				SUM_PA5 = 0;
				for(unsigned int i = 0; i < 1000; i++)
				{
					SUM_PA5 += PA5_Volt[i];
				}
				H_PA5 = SUM_PA5 / N_PA5;
			}
		}
		if(DisplayMode == PARA)
		{
			outputMode = !outputMode; 
			if(outputMode == MUL)
				__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 * X));
			else
				__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 / X));
		}
		if(DisplayMode == REC)
		{
			if(REC_DisplayMode == REC_PA4)
				REC_DisplayMode = REC_PA5;
			else if(REC_DisplayMode == REC_PA5)
				REC_DisplayMode = REC_PA4;
		}
		key[3].single_flag = 0;
	}
	if(key[3].long_flag)
	{
		if(DisplayMode == REC)
		{
			if(REC_DisplayMode == REC_PA4)
			{
				for(unsigned int i = 0; i < 1000; i++)
				{
					PA4_Volt[i] = 0;
				}
				N_PA4 = 0;
				A_PA4 = 0;
				T_PA4 = 0;
				H_PA4 = 0;
			}
			if(REC_DisplayMode == REC_PA5)
			{
				for(unsigned int i = 0; i < 1000; i++)
				{
					PA5_Volt[i] = 0;
				}
				N_PA5 = 0;
				A_PA5 = 0;
				T_PA5 = 0;
				H_PA5 = 0;
			}
		}
		key[3].long_flag = 0;
	}
}

void LCD_Disp(void)
{
	if(DisplayMode == DATA)
	{
		LCD_DisplayStringLine(Line1, "        DATA ");
		if(N_PA4 >= 1 && N_PA5 >= 1)
		{
			sprintf(text, "     PA4=%.2f", PA4_Volt[N_PA4 - 1]);
			LCD_DisplayStringLine(Line3, text);
			sprintf(text, "     PA5=%.2f", PA5_Volt[N_PA5 - 1]);
			LCD_DisplayStringLine(Line4, text);
		}
		else
		{
			sprintf(text, "     PA4=%.2f", PA4_Volt[0]);
			LCD_DisplayStringLine(Line3, text);
			sprintf(text, "     PA5=%.2f", PA5_Volt[0]);
			LCD_DisplayStringLine(Line4, text);
		}
		sprintf(text, "     PA1=%d     ", uwFrequency_T2CH2);
		LCD_DisplayStringLine(Line5, text);
	}
	if(DisplayMode == PARA)
	{
		LCD_DisplayStringLine(Line1, "        PARA");
		sprintf(text, "     X=%d", X);
		LCD_DisplayStringLine(Line3, text);
		sprintf(text, "     Y=%d", Y);
		LCD_DisplayStringLine(Line4, text);
	}
	if(DisplayMode == REC)
	{
		if(REC_DisplayMode == REC_PA4)
		{
			LCD_DisplayStringLine(Line1, "        REC-PA4");
			sprintf(text, "     N=%d", N_PA4);
			LCD_DisplayStringLine(Line3, text);
			sprintf(text, "     A=%.2f", A_PA4);
			LCD_DisplayStringLine(Line4, text);
			sprintf(text, "     T=%.2f", T_PA4);
			LCD_DisplayStringLine(Line5, text);
			sprintf(text, "     H=%.2f", H_PA4);
			LCD_DisplayStringLine(Line6, text);
		}
		if(REC_DisplayMode == REC_PA5)
		{
			LCD_DisplayStringLine(Line1, "        REC-PA5");
			sprintf(text, "     N=%d", N_PA5);
			LCD_DisplayStringLine(Line3, text);
			sprintf(text, "     A=%.2f", A_PA5);
			LCD_DisplayStringLine(Line4, text);
			sprintf(text, "     T=%.2f", T_PA5);
			LCD_DisplayStringLine(Line5, text);
			sprintf(text, "     H=%.2f", H_PA5);
			LCD_DisplayStringLine(Line6, text);
		}
	}
}

int fputc(int ch, FILE *f)
{
	HAL_UART_Transmit(&huart1, (unsigned char *)&ch, 1, HAL_MAX_DELAY);
	return ch;
}

void Rx_Proc(void)
{
	if(BufIndex == 1)
	{
		if(RxBuffer[0] == 'X')
			printf("X:%d\r\n", X);
		else if(RxBuffer[0] == 'Y')
			printf("Y:%d\r\n", Y);
		else if(RxBuffer[0] == '#')
		{
			LCD_Clear(Black);
			ScanMode = !ScanMode;
			if(ScanMode) //反向
			{
				LCD_WriteReg(R1, 0x0100); //垂直对称翻转
				LCD_WriteReg(R96, 0xA700); //水平对称翻转
			}
			else //正向
			{
				LCD_WriteReg(R1, 0x0000);
				LCD_WriteReg(R96, 0x2700);
			}

		}
	}
	if(BufIndex == 3)
	{
		if(RxBuffer[0] == 'P' && RxBuffer[1] == 'A')
		{
			if(RxBuffer[2] == '1')
				printf("PA1:%d\r\n", uwFrequency_T2CH2);
			else if(RxBuffer[2] == '4')
			{
				if(N_PA4)
				{
					printf("PA4:%.2f\r\n", PA4_Volt[N_PA4 - 1]);
				}
				else
				{
					printf("PA4:%.2f\r\n", PA4_Volt[0]);
				}
			}
			else if(RxBuffer[2] == '5')
			{
				if(N_PA4)
				{
					printf("PA5:%.2f\r\n", PA5_Volt[N_PA5 - 1]);
				}
				else
				{
					printf("PA5:%.2f\r\n", PA5_Volt[0]);
				}
			}
		}
	}
	memset(RxBuffer, 0, 30);
	BufIndex = 0;
}

void LED_Control(void)
{
	if(uwTick - LEDtick >= 100)
	{
		LEDtick = uwTick;
		if(PA4_Volt[N_PA4-1] > PA5_Volt[N_PA5-1] * Y)
		{
			LED ^= 0x04;
		}
	}
	if(outputMode == MUL)
	{
		LED |= 0x01;
		LED &= ~0x02;
	}
	else
	{
		LED &= ~0x01;
		LED |= 0x02;
	}
	if(ScanMode == 0)
	{
		LED |= 0x08;
	}
	else
	{
		LED &= ~0x08;
	}
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

四、完成效果

蓝桥杯嵌入式第十三届国赛试题实现效果

五、总结

本篇文章只是为了存放我的代码,所以看不懂很正常,如果需要代码可以找我私信。
十三届考了LCD翻转是从未有过的,我是看了第十三届蓝桥杯嵌入式国赛真题(基于HAL库的巨简代码+超级详解)才明白的,大家也可以学习一下链接中文章的写法。

你可能感兴趣的:(stm32,蓝桥杯,单片机)