无
1.LCD这里不用配置,直接使用提供的资源包就行
2.ADC:开启ADCsingle-ended
3.LED:开启PC8-15,PD2输出模式就行了。
4.定时器:TIM3(按键消抖定时器):PSC:80-1,ARR:10000-1,TIM17(PWM输出定时器):PSC:80,ARR:65535,TIM2:80-1,ARR:0xffffffff
5.i2c:设置PB6,PB7为GPIO_Output模式即可
6.打开串口串行输出输入
#ifndef __INTERRUPT_H__
#define __INTERRUPT_H__
#include "main.h"
#include "stdbool.h"
struct keys
{
bool key_sta;
unsigned char key_judge;
bool single_flag;
unsigned int key_time;
bool long_flag;
};
#endif
#include "interrupt.h"
struct keys key[4] = {0, 0, 0, 0, 0};
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)
{
if(htim->Instance == TIM3)
{
key[0].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
key[1].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
key[2].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
key[3].key_sta = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
for(unsigned char i = 0; i < 4; i++)
{
switch(key[i].key_judge)
{
case 0:
{
if(key[i].key_sta == 0)
{
key[i].key_time = 0;
key[i].key_judge = 1;
}
break;
}
case 1:
{
if(key[i].key_sta == 0)
{
key[i].key_judge = 2;
}
else
{
key[i].key_judge = 0;
}
break;
}
case 2:
{
if(key[i].key_sta == 1)
{
key[i].key_judge = 0;
if(key[i].key_time <= 100)
{
key[i].single_flag = 1;
}
if(key[i].key_time > 100)
{
key[i].long_flag = 1;
}
}
else
{
key[i].key_time++;
}
break;
}
}
}
}
}
/* Captured Values */
uint32_t uwIC2Value1_T2CH2 = 0;
uint32_t uwIC2Value2_T2CH2 = 0;
uint32_t uwLowCapture_T2CH2 = 0;
uint32_t uwHighCapture_T2CH2 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T2CH2 = 0;
/* Frequency Value */
uint32_t uwFrequency_T2CH2 = 0;
double uwDuty_T2CH2 = 0;
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM2)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
if(uhCaptureIndex_T2CH2 == 0)
{
/* Get the 1st Input Capture value */
uwIC2Value1_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_FALLING);
uhCaptureIndex_T2CH2 = 1;
}
else if(uhCaptureIndex_T2CH2 == 1)
{
/* Get the 2nd Input Capture value */
uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_RISING);
/* Capture computation */
if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
{
uwHighCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2);
}
else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
{
/* 0xFFFF is max TIM1_CCRx value */
uwHighCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency
measures */
Error_Handler();
}
uhCaptureIndex_T2CH2 = 2;
uwIC2Value1_T2CH2 = uwIC2Value2_T2CH2;
/* Frequency computation: for this example TIMx (TIM1) is clocked by
APB2Clk */
}
else if(uhCaptureIndex_T2CH2 == 2)
{
uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
{
uwLowCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2);
}
else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
{
/* 0xFFFF is max TIM1_CCRx value */
uwLowCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
}
uwFrequency_T2CH2 = 1000000 / (uwHighCapture_T2CH2 + uwLowCapture_T2CH2);
uwDuty_T2CH2 = uwHighCapture_T2CH2 * 100.0 / (uwHighCapture_T2CH2 + uwLowCapture_T2CH2);
uhCaptureIndex_T2CH2 = 0;
}
}
}
}
char RxBuffer[30];
unsigned char BufIndex = 0;
unsigned char Rxdat;
void HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart)
{
if(huart->Instance == USART1)
{
RxBuffer[BufIndex++] = Rxdat;
HAL_UART_Receive_IT(huart, &Rxdat, 1);
}
}
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.h
* @brief : Header for main.c file.
* This file contains the common defines of the application.
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MAIN_H
#define __MAIN_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx_hal.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Exported types ------------------------------------------------------------*/
/* USER CODE BEGIN ET */
/* USER CODE END ET */
/* Exported constants --------------------------------------------------------*/
/* USER CODE BEGIN EC */
/* USER CODE END EC */
/* Exported macro ------------------------------------------------------------*/
/* USER CODE BEGIN EM */
/* USER CODE END EM */
/* Exported functions prototypes ---------------------------------------------*/
void Error_Handler(void);
/* USER CODE BEGIN EFP */
/* USER CODE END EFP */
/* Private defines -----------------------------------------------------------*/
/* USER CODE BEGIN Private defines */
#define DATA 0
#define PARA 1
#define REC 2
#define REC_PA4 3
#define REC_PA5 4
#define MUL 0
#define DIV 1
/* USER CODE END Private defines */
#ifdef __cplusplus
}
#endif
#endif /* __MAIN_H */
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "interrupt.h"
#include "lcd.h"
#include "stdio.h"
#include "i2c.h"
#include "dadc.h"
#include "stdlib.h"
#include "string.h"
#include "led.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
extern struct keys key[4];
unsigned char eeprom_readData;
unsigned char eeprom_writeData;
char text[30];
extern uint32_t uwFrequency_T2CH2;
extern double uwDuty_T2CH2;
double PA4_Volt[1024] = {0}, PA5_Volt[1024] = {0};
unsigned char DisplayMode;
unsigned char REC_DisplayMode = REC_PA4;
unsigned char X = 1;
unsigned char Y = 1;
unsigned char outputMode = MUL;
unsigned int N_PA4;
unsigned int N_PA5;
double A_PA4 = 0;
double A_PA5 = 0;
double T_PA4 = 0;
double T_PA5 = 0;
double SUM_PA4 = 0;
double SUM_PA5 = 0;
double H_PA4 = 0;
double H_PA5 = 0;
extern char RxBuffer[30];
extern unsigned char BufIndex;
extern unsigned char Rxdat;
unsigned char ScanMode;
unsigned char LED;
unsigned int LEDtick;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void DisposeKey(void);
void LCD_Disp(void);
void Rx_Proc(void);
void LED_Control(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC2_Init();
MX_TIM2_Init();
MX_TIM17_Init();
MX_USART1_UART_Init();
MX_TIM3_Init();
/* USER CODE BEGIN 2 */
LCD_Init();
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
getDualADC(&hadc2);
HAL_Delay(2);
getDualADC(&hadc2);
HAL_TIM_Base_Start_IT(&htim3);
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
if(eeprom_read(2) == 0x83 && eeprom_read(3) == 0x84 && eeprom_read(4) == 0x85) //²»ÊǵÚÒ»´Î
{
X = eeprom_read(1);
Y = eeprom_read(0);
}
else
{
eeprom_write(1, X);
HAL_Delay(10);
eeprom_write(0, Y);
HAL_Delay(10);
eeprom_write(2, 0x83);
HAL_Delay(10);
eeprom_write(3, 0x84);
HAL_Delay(10);
eeprom_write(4, 0x85);
}
__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 * X));
HAL_TIM_PWM_Start_IT(&htim17, TIM_CHANNEL_1);
HAL_UART_Receive_IT(&huart1, &Rxdat, 1);
LED_Disp(0x00);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
if(BufIndex != 0)
{
unsigned char temp = BufIndex;
HAL_Delay(1);
if(temp == BufIndex)
Rx_Proc();
}
DisposeKey();
LCD_Disp();
LED_Control();
LED_Disp(LED);
// sprintf(text, "%.2f%%", uwDuty_T2CH2);
// LCD_DisplayStringLine(Line1, text);
// sprintf(text, "%dHz", uwFrequency_T2CH2);
// LCD_DisplayStringLine(Line2, text);
// sprintf(text, "%.2f", adc2_in17_AO1 * 3.3 / 4096);
// LCD_DisplayStringLine(Line3, text);
// sprintf(text, "%.2f", adc2_in13_AO2 * 3.3 / 4096);
// LCD_DisplayStringLine(Line4, text);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void DisposeKey(void)
{
if(key[0].single_flag)
{
LCD_Clear(Black);
DisplayMode++;
DisplayMode %= 3;
key[0].single_flag = 0;
}
if(key[1].single_flag)
{
if(DisplayMode==PARA)
{
X++;
if(X==5)
X = 1;
if(outputMode == MUL)
__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 * X));
else
__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 / X));
eeprom_write(1, X);
}
key[1].single_flag = 0;
}
if(key[2].single_flag)
{
if(DisplayMode==PARA)
{
Y++;
if(Y==5)
Y = 1;
eeprom_write(0, Y);
}
key[2].single_flag = 0;
}
if(key[3].single_flag)
{
if(DisplayMode == DATA)
{
getDualADC(&hadc2);
if(N_PA4 + 1 <= 1000)
{
PA4_Volt[N_PA4] = adc2_in17_AO1 * 3.3 / 4096;
N_PA4++;
A_PA4 = PA4_Volt[0];
for(unsigned int i = 0; i < N_PA4; i++)
{
if(A_PA4 < PA4_Volt[i])
{
A_PA4 = PA4_Volt[i];
}
}
T_PA4 = PA4_Volt[0];
for(unsigned int i = 0; i < N_PA4; i++)
{
if(T_PA4 > PA4_Volt[i])
{
T_PA4 = PA4_Volt[i];
}
}
SUM_PA4 = 0;
for(unsigned int i = 0; i < N_PA4; i++)
{
SUM_PA4 += PA4_Volt[i];
}
H_PA4 = SUM_PA4 / N_PA4;
}
else
{
for(unsigned int i = 0; i < 999; i++)
{
PA4_Volt[i] = PA4_Volt[i+1];
}
PA4_Volt[999] = adc2_in17_AO1 * 3.3 / 4096;
A_PA4 = PA4_Volt[0];
for(unsigned int i = 0; i < 1000; i++)
{
if(A_PA4 < PA4_Volt[i])
{
A_PA4 = PA4_Volt[i];
}
}
T_PA4 = PA4_Volt[0];
for(unsigned int i = 0; i < 1000; i++)
{
if(T_PA4 > PA4_Volt[i])
{
T_PA4 = PA4_Volt[i];
}
}
SUM_PA4 = 0;
for(unsigned int i = 0; i < 1000; i++)
{
SUM_PA4 += PA4_Volt[i];
}
H_PA4 = SUM_PA4 / N_PA4;
}
if(N_PA5 + 1 <= 1000)
{
PA5_Volt[N_PA5] = adc2_in13_AO2 * 3.3 / 4096;
N_PA5++;
A_PA5 = PA5_Volt[0];
for(unsigned int i = 0; i < N_PA5; i++)
{
if(A_PA5 < PA5_Volt[i])
{
A_PA5 = PA5_Volt[i];
}
}
T_PA5 = PA5_Volt[0];
for(unsigned int i = 0; i < N_PA5; i++)
{
if(T_PA5 > PA5_Volt[i])
{
T_PA5 = PA5_Volt[i];
}
}
SUM_PA5 = 0;
for(unsigned int i = 0; i < N_PA5; i++)
{
SUM_PA5 += PA5_Volt[i];
}
H_PA5 = SUM_PA5 / N_PA5;
}
else
{
for(unsigned int i = 0; i < 999; i++)
{
PA5_Volt[i] = PA5_Volt[i+1];
}
PA5_Volt[999] = adc2_in13_AO2 * 3.3 / 4096;
A_PA5 = PA5_Volt[0];
for(unsigned int i = 0; i < 1000; i++)
{
if(A_PA5 < PA5_Volt[i])
{
A_PA5 = PA5_Volt[i];
}
}
T_PA5 = PA5_Volt[0];
for(unsigned int i = 0; i < 1000; i++)
{
if(T_PA5 > PA5_Volt[i])
{
T_PA5 = PA5_Volt[i];
}
}
SUM_PA5 = 0;
for(unsigned int i = 0; i < 1000; i++)
{
SUM_PA5 += PA5_Volt[i];
}
H_PA5 = SUM_PA5 / N_PA5;
}
}
if(DisplayMode == PARA)
{
outputMode = !outputMode;
if(outputMode == MUL)
__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 * X));
else
__HAL_TIM_SET_PRESCALER(&htim17, 80000000 / 100 / (uwFrequency_T2CH2 / X));
}
if(DisplayMode == REC)
{
if(REC_DisplayMode == REC_PA4)
REC_DisplayMode = REC_PA5;
else if(REC_DisplayMode == REC_PA5)
REC_DisplayMode = REC_PA4;
}
key[3].single_flag = 0;
}
if(key[3].long_flag)
{
if(DisplayMode == REC)
{
if(REC_DisplayMode == REC_PA4)
{
for(unsigned int i = 0; i < 1000; i++)
{
PA4_Volt[i] = 0;
}
N_PA4 = 0;
A_PA4 = 0;
T_PA4 = 0;
H_PA4 = 0;
}
if(REC_DisplayMode == REC_PA5)
{
for(unsigned int i = 0; i < 1000; i++)
{
PA5_Volt[i] = 0;
}
N_PA5 = 0;
A_PA5 = 0;
T_PA5 = 0;
H_PA5 = 0;
}
}
key[3].long_flag = 0;
}
}
void LCD_Disp(void)
{
if(DisplayMode == DATA)
{
LCD_DisplayStringLine(Line1, " DATA ");
if(N_PA4 >= 1 && N_PA5 >= 1)
{
sprintf(text, " PA4=%.2f", PA4_Volt[N_PA4 - 1]);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " PA5=%.2f", PA5_Volt[N_PA5 - 1]);
LCD_DisplayStringLine(Line4, text);
}
else
{
sprintf(text, " PA4=%.2f", PA4_Volt[0]);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " PA5=%.2f", PA5_Volt[0]);
LCD_DisplayStringLine(Line4, text);
}
sprintf(text, " PA1=%d ", uwFrequency_T2CH2);
LCD_DisplayStringLine(Line5, text);
}
if(DisplayMode == PARA)
{
LCD_DisplayStringLine(Line1, " PARA");
sprintf(text, " X=%d", X);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " Y=%d", Y);
LCD_DisplayStringLine(Line4, text);
}
if(DisplayMode == REC)
{
if(REC_DisplayMode == REC_PA4)
{
LCD_DisplayStringLine(Line1, " REC-PA4");
sprintf(text, " N=%d", N_PA4);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " A=%.2f", A_PA4);
LCD_DisplayStringLine(Line4, text);
sprintf(text, " T=%.2f", T_PA4);
LCD_DisplayStringLine(Line5, text);
sprintf(text, " H=%.2f", H_PA4);
LCD_DisplayStringLine(Line6, text);
}
if(REC_DisplayMode == REC_PA5)
{
LCD_DisplayStringLine(Line1, " REC-PA5");
sprintf(text, " N=%d", N_PA5);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " A=%.2f", A_PA5);
LCD_DisplayStringLine(Line4, text);
sprintf(text, " T=%.2f", T_PA5);
LCD_DisplayStringLine(Line5, text);
sprintf(text, " H=%.2f", H_PA5);
LCD_DisplayStringLine(Line6, text);
}
}
}
int fputc(int ch, FILE *f)
{
HAL_UART_Transmit(&huart1, (unsigned char *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
void Rx_Proc(void)
{
if(BufIndex == 1)
{
if(RxBuffer[0] == 'X')
printf("X:%d\r\n", X);
else if(RxBuffer[0] == 'Y')
printf("Y:%d\r\n", Y);
else if(RxBuffer[0] == '#')
{
LCD_Clear(Black);
ScanMode = !ScanMode;
if(ScanMode) //反向
{
LCD_WriteReg(R1, 0x0100); //垂直对称翻转
LCD_WriteReg(R96, 0xA700); //水平对称翻转
}
else //正向
{
LCD_WriteReg(R1, 0x0000);
LCD_WriteReg(R96, 0x2700);
}
}
}
if(BufIndex == 3)
{
if(RxBuffer[0] == 'P' && RxBuffer[1] == 'A')
{
if(RxBuffer[2] == '1')
printf("PA1:%d\r\n", uwFrequency_T2CH2);
else if(RxBuffer[2] == '4')
{
if(N_PA4)
{
printf("PA4:%.2f\r\n", PA4_Volt[N_PA4 - 1]);
}
else
{
printf("PA4:%.2f\r\n", PA4_Volt[0]);
}
}
else if(RxBuffer[2] == '5')
{
if(N_PA4)
{
printf("PA5:%.2f\r\n", PA5_Volt[N_PA5 - 1]);
}
else
{
printf("PA5:%.2f\r\n", PA5_Volt[0]);
}
}
}
}
memset(RxBuffer, 0, 30);
BufIndex = 0;
}
void LED_Control(void)
{
if(uwTick - LEDtick >= 100)
{
LEDtick = uwTick;
if(PA4_Volt[N_PA4-1] > PA5_Volt[N_PA5-1] * Y)
{
LED ^= 0x04;
}
}
if(outputMode == MUL)
{
LED |= 0x01;
LED &= ~0x02;
}
else
{
LED &= ~0x01;
LED |= 0x02;
}
if(ScanMode == 0)
{
LED |= 0x08;
}
else
{
LED &= ~0x08;
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
蓝桥杯嵌入式第十三届国赛试题实现效果
本篇文章只是为了存放我的代码,所以看不懂很正常,如果需要代码可以找我私信。
十三届考了LCD翻转是从未有过的,我是看了第十三届蓝桥杯嵌入式国赛真题(基于HAL库的巨简代码+超级详解)才明白的,大家也可以学习一下链接中文章的写法。