- 【机器学习&深度学习】反向传播机制
目录一、一句话定义二、类比理解三、为什重要?四、用生活例子解释:神经网络=烹饪机器人4.1第一步:尝一口(前向传播)4.2第二步:倒着推原因(反向传播)五、换成人工智能流程说一遍六、图示类比:找山顶(最优参数)七、总结一句人话八、PyTorch代码示例:亲眼看到每一层的梯度九、梯度=损失函数对参数的偏导数十、类比总结反向传播(Backpropagation)是神经网络中训练过程的核心机制,它就像“
- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- pytorch-数学运算
码啥码
深度学习之pytorchpytorch深度学习python
四则运算加减乘除add+sub-mul*div/a=torch.rand(3,4)b=torch.rand(4)a,b'''(tensor([[0.2384,0.5022,0.7100,0.0400],[0.1716,0.0894,0.0795,0.1456],[0.7635,0.9423,0.7649,0.3379]]),tensor([0.8526,0.8296,0.1845,0.7922])
- 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxPool方法
Mr数据杨
Python深度学习python深度学习pytorch
在深度学习的世界中,MaxPooling是一种关键的操作,用于降低数据的维度并保留重要特征。这就像是从一堆照片中挑选出最能代表某个场景的那张。PyTorch提供了多种MaxPooling层,包括nn.MaxPool1d、nn.MaxPool2d和nn.MaxPool3d,它们分别适用于不同维度的数据处理。如果处理的是声音信号(一维数据),就会用到nn.MaxPool1d。而处理图像(二维数据)时,
- Pytorch模型安卓部署
python&java
pytorch人工智能python
Pytorch是一种流行的深度学习框架,用于算法开发,而Android是一种广泛应用的操作系统,多应用于移动设备当中。目前多数的研究都是在于算法上,个人觉得把算法落地是一件很有意思的事情,因此本人准备分享一些模型落地的文章(后续可能分享微信小程序部署,PyQt部署以及exe打包,ncnn部署,tensorRT部署,MNN部署)。本篇文章主要分享Pytorch的Android端部署。看这篇文章的读者
- 【PyTorch】保存和加载模型
Jackilina_Stone
#DeepLearningpytorchpython人工智能深度学习模型
目录■state_dict■用于推理的保存和加载模型保存/加载state_dict保存/加载整个模型以TorchScript格式导出/加载模型■保存和加载用于推断和/或恢复训练的一般检查点(Checkpoint)■将多个模型保存在一个文件中■使用来自不同模型的参数进行暖启动(Warmstarting)模型■跨设备保存和加载模型保存在GPU,加载到CPU保存在GPU,加载到GPU保存在CPU,加载到
- PyTorch教程:LSTM语言模型的动态量化技术解析
怀灏其Prudent
PyTorch教程:LSTM语言模型的动态量化技术解析tutorialsPyTorchtutorials.项目地址:https://gitcode.com/gh_mirrors/tuto/tutorials前言在深度学习模型部署过程中,模型大小和推理速度是两个至关重要的考量因素。PyTorch提供的动态量化技术能够在不显著影响模型准确率的前提下,有效减小模型体积并提升推理速度。本文将深入解析如何对
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 大模型量化
需要重新演唱
大模型量化
大模型量化是一种优化技术,旨在减少深度学习模型的内存占用和提高推理速度,同时尽量保持模型的精度。量化通过将模型中的浮点数权重和激活值转换为较低精度的表示形式来实现这一目标。以下是关于大模型量化的详细知识:目录1.量化基础1.1量化定义1.2量化优势1.3量化挑战2.量化方法2.1量化类型2.2量化粒度2.3量化算法3.量化实践3.1量化流程3.2量化工具4.量化案例4.1BERT量化4.2GPT-
- 【大模型学习 | 量化】pytorch量化基础知识(1)
九年义务漏网鲨鱼
算法学习pytorch人工智能
pytorch量化[!note]官方定义:performingcomputationsandstoringtensorsatlowerbitwidthsthanfloatingpointprecision.支持INT8量化,可以降低4倍的模型大小以及显存需求,加速2-4倍的推理速度通俗理解:降低权重和激活值的精度(FP32→INT8),从而提高模型大小以及显存需求。一、前置知识1.1算子融合将多个
- pytorch 要点之雅可比向量积
AI大模型教程
pytorch人工智能pythonfacebook深度学习机器学习webpack
自动微分是PyTorch深度学习框架的核心。既然是核心,就需要敲黑板、划重点学习。同时,带来另外一个重要的数学概念:雅可比向量积。PyTorch中的自动微分与雅可比向量积自动微分(AutomaticDifferentiation,AD)是深度学习框架中的关键技术之一,它使得模型训练变得更加简单和高效。且已知:PyTorch是一个广泛使用的深度学习框架,它内置了强大的自动微分功能。在本文中,我们将深
- 深度学习计算机视觉开源系统OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置【详细、可运行】
nomoremorphine
深度学习计算机视觉开源
OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置OpenMMLab简介优势:一、Windows/Linux下环境配置(以mmsegmentationv1.2.2(最新版)为例)0.确认安装版本信息1)确认电脑显卡版本2)确认mmcv对应版本3)确认版本1.安装CUDA和cuDNN2.创建conda环境,下载pytorch3.安装mmcv4.安装MMS
- Python Robot Framework【自动化测试框架】简介
老胖闲聊
Python库大全python开发语言
想全面了解DeepSeek的看过来【包邮】DeepSeek全攻略人人需要的AI通识课零基础掌握DeepSeek的实用操作手册指南【限量作者亲笔签名版售完即止】玩转DeepSeek这本就够了【自营包邮】DeepSeek实战指南deepseek从入门到精通实用操作指南现代科技科普读物AI普及知识读物人工智能使用教程中小学读物京东超级618Python初学者的入门教程动手学深度学习PyTorch版李沐和
- PyTorch版本匹配终极指南:手把手教你避开99%的安装坑
被版本支配的恐惧(真实故事)上周我的学弟兴冲冲跑来:“师兄!我照着CSDN教程装PyTorch,结果训练时直接报错cudaruntimeerror!”我一看他的环境——Python3.12强行装PyTorch1.8,搭配CUDA11.6…(此时应有乌鸦飞过)这就像用Win11系统装XP时代的显卡驱动,能不翻车吗?!一、版本对应表(2024最新版)(掏出小本本记重点!!!)这是我整理的最新版本对应关
- anaconda创建python3.7环境_anaconda使用以及创建python3.7+pytorch1.0虚拟环境以及Jupyter notebook初级使用...
weixin_39837124
查看所有已安装的软件包$condalist#packagesinenvironmentatS:\Users\jiangshan\Anaconda3:##NameVersionBuildChannel_ipyw_jlab_nb_ext_conf0.1.0py37_0defaultsalabaster0.7.12py37_0defaultsanaconda2018.12py37_0defaults..
- Anaconda 创建python3.9+pytorch1.10.1+cuda11.3环境
canny_kevin
DeepLearningPythonpythonconda
1.打开AnacondaPowershellPrompt2.创建conda环境condacreate--nameRordAIpython=3.9conda一些命令condainfo--envs:输出中带有【*】号的的就是当前所处的环境condalist:看这个环境下安装的包和版本condainstallnumpyscikit-learn:安装numpysklearn包condaenvremove-
- Pytorch血泪安装史好吗(GPU版本+cuda12.1+python3.9.13)
宇宙最强袋鼠
pytorchpython人工智能
1.安装cuda首先看下自己电脑是CPU还是GPU,看自己电脑对应的cuda版本看右下角英伟达标识,点击组件,我的cuda版本是12.3,但最后发现安12.1比较好2.安装12.1cuda版本对应的cudnn前两步可以看参考:Pytorch的安装,有点繁琐但是很详细,保姆级教程不信你安装不成功(Cuda+Cudnn+Anaconda+Pytorch)_pytorch安装-CSDN博客3.anaco
- 用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
点我头像干啥
AI深度学习pytorch神经网络
引言在深度学习领域,研究人员不断探索更接近生物神经系统工作方式的模型。液态神经网络(LiquidNeuralNetworks,LNN)正是这样一种受生物神经元动态特性启发的创新架构。本文将带你了解LNN的核心概念,并展示如何使用PyTorch实现这种前沿模型。一、什么是液态神经网络?液态神经网络是由MIT研究人员提出的一种新型神经网络架构,它模仿了生物神经系统的几个关键特性:动态连接:神经元之间的
- 第37节:PyTorch数据加载与预处理
点我头像干啥
pytorch人工智能python
1.引言在深度学习项目中,数据加载与预处理是构建高效模型的关键环节。PyTorch作为当前最流行的深度学习框架之一,提供了一套完整且灵活的数据处理工具链。本文将全面介绍PyTorch中的数据加载与预处理机制,涵盖从基础概念到高级技巧的各个方面。2.PyTorch数据加载核心组件2.1Dataset类torch.utils.data.Dataset是PyTorch中所有数据集处理的抽象基类,代表数据
- python学习笔记(深度学习)
天水幼麟
python学习笔记
文章目录1、概述2、学习内容2.1、pytorch常见语法2.1.1、sum2.1.2、广播机制2.1.3、张量1、概述本篇博客用来记录,在深度学习过程中,常用的python语法内容2、学习内容2.1、pytorch常见语法2.1.1、sum在PyTorch中,torch.sum()是一个非常常用的函数,用于对张量(Tensor)进行求和操作。它的核心作用是沿着指定的维度对张量元素进行累加,支持灵
- 深入GPU编程:从硬件架构到内核优化
Kaydeon
硬件架构
深入GPU编程:从硬件架构到内核优化在当今由大型模型驱动的AI时代,GPU集群已成为推动技术进步的核心引擎。然而,仅仅让代码在GPU上“运行”与让其“高效运行”之间存在着巨大的性能鸿沟。对于动辄需要数千甚至数万GPU小时进行训练的超大规模模型而言,这一鸿沟直接关系到研发成本、迭代速度和最终的科研成果。一个未经优化的操作可能在不经意间将训练时间延长数倍,造成巨大的资源浪费。PyTorch、Tenso
- 理解python、anaconda、pytorch以及pycharm之间的关系
幸运小仙
pythonpytorchpycharm
1.Python:编程语言,是基础Python是一种高级的、通用的编程语言。它以其简洁的语法、丰富的库和强大的社区支持而闻名。在数据科学、机器学习和深度学习领域,Python是主要的编程语言。可以使用Python编写代码来处理数据、构建模型、进行实验等。2.Anaconda:Python的发行版,提供便利Anaconda是一个流行的Python发行版,它包含了Python解释器以及许多常用的科学计
- bitsandbytes 入门教程
苏承根
bitsandbytes入门教程项目地址:https://gitcode.com/gh_mirrors/bi/bitsandbytes1.项目介绍bitsandbytes是一个用于PyTorch的库,专注于8位优化器和量化算法。它旨在通过高效的k比特量化技术,使得大型语言模型在资源受限的环境下也能运行,从而提高计算效率并降低内存占用。2.项目快速启动首先,确保你的环境中已经安装了PyTorch。如
- bitsandbytes 安装和配置指南
黎沁颖Desired
bitsandbytes安装和配置指南bitsandbytes8-bitCUDAfunctionsforPyTorch项目地址:https://gitcode.com/gh_mirrors/bi/bitsandbytes1.项目基础介绍和主要编程语言项目基础介绍bitsandbytes是一个轻量级的Python库,主要用于在PyTorch中实现k-bit量化,从而使得大规模语言模型(LLM)更加易
- Python 里 PyTorch 的生成对抗网络架构
Python编程之道
pythonpytorch生成对抗网络ai
Python里PyTorch的生成对抗网络架构关键词:PyTorch、生成对抗网络(GAN)、深度学习、神经网络、计算机视觉、对抗训练、生成模型摘要:本文深入探讨了在PyTorch框架下实现生成对抗网络(GAN)的完整架构。我们将从GAN的基本原理出发,详细讲解其核心组件、数学基础,并通过PyTorch代码实现一个完整的GAN模型。文章涵盖了从理论到实践的各个方面,包括模型设计、训练技巧、常见问题
- CUDA与PyTorch(GPU)的对应关系
CUDA与PyTorch(GPU)的对应关系:(需要自己按需求去找):https://pytorch.org/get-started/previous-versions/表二:CUDAToolkit版本及可用PyTorch对应关系CUDAToolkit版本可用PyTorch版本7.50.4.1,0.3.0,0.2.0,0.1.12-0.1.68.01.1.0,1.0.0,0.4.19.01.1.0
- Python学习Day33
m0_64472246
python打卡学习python
学习来源:浙大疏锦行一、PyTorch和CUDA的安装:给电脑装“超级计算器”通俗解释PyTorch:是一个专门用于深度学习的“工具箱”,类似程序员的“智能积木”,能快速搭建神经网络。CUDA:是NVIDIA显卡的“加速引擎”,相当于给电脑的显卡装了一个“超级计算器”,让它能快速计算复杂的数学问题(如图像识别、数据训练)。安装逻辑:先装CUDA(显卡的“计算器驱动”),再装PyTorch(用这个计
- 人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解1
微学AI
AI算法工程师(中级)课程自然语言处理实战人工智能神经网络算法LSTMgru
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解。在深度学习领域,循环神经网络(RNN)因其处理序列数据的能力而备受关注。然而,传统的RNN存在梯度消失和梯度爆炸的问题,这使得它在长序列任务中的表现不尽如人意。为了解决这一问题,长短时记忆网络(LSTM)和门控循环单元(GRU)应运而生。本文将详细介绍LSTM和GRU
- 基于PyTorch的MNIST手写数字识别(配置手写板使用)
热心不起来的市民小周
CV项目实操pytorch人工智能python
基于PyTorch的MNIST手写数字识别(配置手写板使用)代码详见:https://github.com/xiaozhou-alt/CNN_MNIST文章目录基于PyTorch的MNIST手写数字识别(配置手写板使用)一、项目介绍二、数据集介绍三、项目实现1.环境准备2.项目文件夹结构3.数据预处理4.开始训练!(1)数据加载(2)数据转换(3)模型定义(4)训练过程(5)评估测试四、结果展示一
- 开源项目教程:Learning to See in the Dark
包椒浩Leith
开源项目教程:LearningtoSeeintheDarkpytorch-Learning-to-See-in-the-Dark项目地址:https://gitcode.com/gh_mirrors/pyt/pytorch-Learning-to-See-in-the-Dark项目介绍pytorch-Learning-to-See-in-the-Dark是一个使用PyTorch框架实现的项目,旨在
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round