基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍

基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍_第1张图片

项目背景

当前,常见的大气污染预测模型大多是基于物理机理构建的,比如空气质量预测模型 Calpuff、AERMOD、CMAQ 等。然而,这些模型运算较为复杂,对于输入数据的要求非常高,运算耗时也比较长,适合用于常规固定区域的预报。当遇到突发污染事件时,就无法有效发挥作用。

针对以上问题,本项目以某城区 3km*3km 范围的固定模拟区域,根据污染物扩散模型,快速计算任意释放点源和任意风向的污染物扩散动图,并进行精度评估。仅利用城市局部污染物扩散云图作为输入,使用深度学习模型提取图像中污染物扩散的特征,纯数据驱动,无需建立物理模型,预测耗时短,适合作为突发污染扩散事件时的应急处置决策辅助。

项目需求

课题名称

基于数据驱动的污染物扩散深度学习模型案例

课题需求

外部单位提供数据集,总数据集详细描述:120 个动图数据(3 个风速*5 个释放源点位 * 8 个风向)。选取其中任意 1 个动图的数据,基于数据驱动类模型(模型不限制)提取数据特征,得到污染物扩散模型,可对污染物扩散进行预测。

  • 项目地址

https://aistudio.baidu.com/aistudio/projectdetail/5663515

实现过程

数据集

我们选择了风速 15m/s,风向正北,Pos_0 作为污染源释放点的动图数据,数据来源于某城区 3km*3km 范围的固定区域内污染物扩散 CFD 模拟结果(南京欧帕提亚公司提供),共 745 秒 148 张污染物浓度云图,两张图片时间间隔 5 秒。

基于飞桨 2.4.0 的开发环境,在对动图解压之后,我们发现动图解压得到的 181 张静态图片中第 148 张之后的图片存在明显的图像抖动。我们采用了基于 Harris 角点检测的图像对齐算法进行处理,但是图像抖动没有得到完全消除。为了保证模型输入数据的质量,我们丢弃了第 148 张之后的静态图片。

基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍_第2张图片
基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍_第3张图片
基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍_第4张图片

图1 原始数据

U-Net 网络模型

网络模型如图 2 所示,其由 3 个 Encoder/Decoder、9 个卷积 Conv、9 个反卷积 Conv-T 组成,约 30 万个训练参数。之所以选择 U-Net,是因为该网络在图像分割和目标识别中应用广泛,污染物扩散模式学习可以看作是一种动态的目标识别任务,只不过目标的形态比较抽象;另一个原因是 U-Net 的代码实现较简单,短时间内可以完成网络的搭建。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LEHNfl7B-1687247631447)(https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/99680ddcbcd54560afb36c56f8c13efe~tplv-k3u1fbpfcp-zoom-1.image “wps_doc_3.png”)]

图2 U-Net网络图

核心代码

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.utils import weight_norm

# 创建基础卷积层
def create_layer(in_channels, out_channels, kernel_size, wn=True, bn=True,
                 activation=nn.ReLU, convolution=nn.Conv2D):
    assert kernel_size % 2 == 1
    layer = [ ]
    conv = convolution(in_channels, out_channels, kernel_size, padding=kernel_size // 2)
    if wn:
        conv = weight_norm(conv)
    layer.append(conv)
    if activation is not None:
        layer.append(activation())
    if bn:
        layer.append(nn.BatchNorm2D(out_channels))
    return nn.Sequential(*layer)

# 创建Encoder中的单个块
def create_encoder_block(in_channels, out_channels, kernel_size, wn=True, bn=True,
                         activation=nn.ReLU, layers=2):
    encoder = [ ]
    for i in range(layers):
        _in = out_channels
        _out = out_channels
        if i == 0:
            _in = in_channels
        encoder.append(create_layer(_in, _out, kernel_size, wn, bn, activation, nn.Conv2D))
    return nn.Sequential(*encoder)

# 创建Decoder中的单个块
def create_decoder_block(in_channels, out_channels, kernel_size, wn=True, bn=True,
                         activation=nn.ReLU, layers=2, final_layer=False):
    decoder = [ ]
    for i in range(layers):
        _in = in_channels
        _out = in_channels
        _bn = bn
        _activation = activation
        if i == 0:
            _in = in_channels * 2
        if i == layers - 1:
            _out = out_channels
            if final_layer:
                _bn = False
                _activation = None
        decoder.append(create_layer(_in, _out, kernel_size, wn, _bn, _activation, nn.Conv2DTranspose))
    return nn.Sequential(*decoder)

# 创建Encoder
def create_encoder(in_channels, filters, kernel_size, wn=True, bn=True, activation=nn.ReLU, layers=2):
    encoder = [ ]
    for i in range(len(filters)):
        if i == 0:
            encoder_layer = create_encoder_block(in_channels, filters[i], kernel_size, wn, bn, activation, layers)
        else:
            encoder_layer = create_encoder_block(filters[i - 1], filters[i], kernel_size, wn, bn, activation, layers)
        encoder = encoder + [encoder_layer]
    return nn.Sequential(*encoder)

# 创建Decoder
def create_decoder(out_channels, filters, kernel_size, wn=True, bn=True, activation=nn.ReLU, layers=2):
    decoder = []
    for i in range(len(filters)):
        if i == 0:
            decoder_layer = create_decoder_block(filters[i], out_channels, kernel_size, wn, bn, activation, layers,
                                                 final_layer=True)
        else:
            decoder_layer = create_decoder_block(filters[i], filters[i - 1], kernel_size, wn, bn, activation, layers,
                                                 final_layer=False)
        decoder = [decoder_layer] + decoder
    return nn.Sequential(*decoder)

# 创建网络
class UNetEx(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3,
                 weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None):
        super().__init__()
        assert len(filters) > 0
        self.final_activation = final_activation
        self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers)
        decoders = [ ]
        # for i in range(out_channels):
        decoders.append(create_decoder(out_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers))
        self.decoders = nn.Sequential(*decoders)

    def encode(self, x):
        tensors = [ ]
        indices = [ ]
        sizes = [ ]
        for encoder in self.encoder:
            x = encoder(x)
            sizes.append(x.shape)
            tensors.append(x)
            x, ind = F.max_pool2d(x, 2, 2, return_mask=True)
            indices.append(ind)
        return x, tensors, indices, sizes

    def decode(self, _x, _tensors, _indices, _sizes):
        y = [ ]
        for _decoder in self.decoders:
            x = _x
            tensors = _tensors[:]
            indices = _indices[:]
            sizes = _sizes[:]
            for decoder in _decoder:
                tensor = tensors.pop()
                size = sizes.pop()
                ind = indices.pop()
                # 反池化操作,为上采样
                x = F.max_unpool2d(x, ind, 2, 2, output_size=size)
                x = paddle.concat([tensor, x], axis=1)
                x = decoder(x)
            y.append(x)
        return paddle.concat(y, axis=1)

    def forward(self, x):
        x, tensors, indices, sizes = self.encode(x)
        x = self.decode(x, tensors, indices, sizes)
        if self.final_activation is not None:
            x = self.final_activation(x)
        return x

训练

训练时输入数据为上一时刻的污染物云图,输出为预测的下一时刻的污染物云图。当前的训练 batch-size 为 1,即只预测下一时刻的污染物扩散情况。训练时,每 10 个 epoch 保存一次模型,防止训练意外中断时模型参数丢失。

# 训练方法
def train(model, train_dataset, criterion, optimizer, device, num_epochs):
    loss_history = [ ]
    epoch_loss = 0
# 遍历批次
    for epoch in range(num_epochs):
        optimizer.clear_grad()
        for batch_id in range(len(train_dataset)-1):
            inputs = train_dataset[batch_id]
            outputs_true = train_dataset[batch_id+1]

            inputs = T.ToTensor()(inputs)
            inputs = paddle.unsqueeze(inputs, 0)
            outputs_true = T.ToTensor()(outputs_true)
            outputs_true = paddle.unsqueeze(outputs_true, 0)

# 训练
            outputs = model(inputs)
# 计算损失值
            loss = criterion(outputs, outputs_true)
            if batch_id % 10 ==0:
                print('epoch:',epoch,'batch_id:',batch_id,'loss:',loss.numpy())
            loss.backward()

            epoch_loss += loss.item()
        optimizer.step()
        epoch_loss /= len(train_dataset)


        loss_history.append(epoch_loss)
        print("Epoch [{}/{}], Loss: {:.8f}".format(epoch + 1, num_epochs, loss.numpy()[0]))

    # 保存模型
        if epoch % 10 == 0:
            save_model(model, '/home/aistudio/pollution_model.pdparams')

    print("Training complete.")
return loss_history

预测

预测时,输入测试数据某时刻的污染物扩散云图,预测下一时刻的污染物扩散情况。测试函数中 supervise 这个 flag 为后续连续预测多个时刻的数据预置了接口。目前 supervise 置为 true,当模型预备连续预测多个时刻数据时,测试时将 supervise 置为 false。

def test():
    # 初始化结果列表
    results = [ ]

    # 测试集合起始点
    inputs = test_dataset[0]
    inputs = T.ToTensor()(inputs)
    inputs = paddle.unsqueeze(inputs, 0)

    # 是否supervise
    flag_supervise = True

    device = paddle.set_device('gpu' if paddle.is_compiled_with_cuda() else 'cpu')
    # 加载模型
    model = UNetEx(3,3,3)
    load_model(model,'/home/aistudio/pollution_model.pdparams',device)

    for num in range(1,10):

        # 进行预测
        outputs = model(inputs)

        outputs_np = outputs.numpy()
        outputs_np = np.squeeze(outputs_np, axis=0)  # 去除第一个维度(batch_size)
        outputs_np = np.transpose(outputs_np, (1, 2, 0))  # 将通道维度调整为最后一个维度
        outputs_np = (255 * np.clip(outputs_np, 0, 1)).astype('uint8')
        #outputs_np = outputs_np.transpose([1, 2, 0])
        #outputs_np_uint8 = (outputs_np * 255).astype(np.uint8)
        # 将预测结果添加到结果列表中
        results.append(outputs_np)

        if flag_supervise == False:
            # 将预测结果作为下一帧的输入
            inputs = outputs
        else:
            # 使用真实数据预测
            inputs = test_dataset[num+1]
            inputs = T.ToTensor()(inputs)
            inputs = paddle.unsqueeze(inputs, 0)

    return results

results = test()

项目成果

基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍_第5张图片
图3 计算函数损失值
基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍_第6张图片
图4 对比 CFD 模拟参数对比

基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍_第7张图片

图5 残差值对比

如图 5 所示,浓度误差主要集中在污染源附近(如图红色框),主要数值分布在-0.02~0.02 之间。不同颜色分别代表不同浓度区间误差,蓝色表示的低浓度相对误差较小,绿色红色表示的中高浓度误差平均误差较高,绿色区域表征的中等浓度区域,偏大的误差影响的面积较大。

基于数据驱动 U-Net 模型的大气污染物扩散快速预测,提升计算速度近6000倍_第8张图片

图6 数值对比

未来发展方向

预测能力方面

  • 基于前一时刻的污染物浓度云图,预测后十个时刻、二十个时刻,四十个时刻的污染物浓度云图;

  • 尝试用多时刻预测多时刻。

网络方面

  • 尝试引入更先进的网络架构,如 transformer;

  • 对于网络层数和每层网络的神经元个数,尝试进行敏感性分析和误差分析;

  • 尝试引入更多种类的激活函数如 tanh,silu 等;

  • 尝试对 learning rate、batch size 等超参数进行调整实验。

物理原理方面

  • 尝试引入物理先验知识,对建筑、边界位置施加 loss 软约束;

  • 尝试利用流体 NS 方程对模型进行修正。

模型方面

  • 尝试引入更多参数作为输入:如污染源位置、污染源初始浓度等提高模型的适应能力;

  • 增加模型参数量级,探索大模型对复杂多态问题的处理能力;

  • 尝试和传统流体求解方法进行融合。

项目意义与心得

本项目尝试用 U-Net 网络通过污染物扩散云图来学习污染物扩散的模型参数,对污染物扩散进行快速预测,是数据驱动计算场景拓展的一次探索。从项目结果来看,模型计算速度相比 CFD 模拟提升明显,但是模型预测的效果还有待提升,未来将通过探索以上几个方向,不断优化模型预测效果。项目实现过程中,我们花费了大量的时间处理背景存在抖动的图像,直到后来发现有一部分数据集的质量要远远好于另一部分,我们选择放弃质量不好的数据,从而加快了项目的进展。

数据处理过程中有以下几个方面的心得。

第一,对项目的数据应该第一时间进行全局探索,了解数据的全貌,对数据质量进行评估;

第二,与其花费大量的时间处理质量不好的数据,不如先使用质量较好的数据,优先做对模型取得进展更加关键的事情;

第三,相对于改变模型的结构,提高输入数据的质量对模型的训练结果起到更加积极的作用。一些开源模型的效果无法复现的原因在于训练数据的不公开,即便大家都用到同样结构的网络,但是训练数据不同,模型取得的效果就大不相同。从这个角度看,模型参数是训练数据在网络上留下的压缩信息,训练数据存在的瑕疵很难通过优化网络来解决。

飞桨 AI for Science 共创计划为本项目提供了强大的技术支持,打造活跃的前瞻性的 AI for Science 开源社区,通过飞桨 AI for Science 共创计划,学习到了如何在飞桨平台上使用科学计算的 AI 方法去解决 CFD 模拟预测的问题,并且大幅度提高了数据驱动计算的速度。相信未来会有越来越多的项目通过 AI for Science 共创计划建立产学研闭环,推动科研创新与产业赋能。

相关地址

  • 飞桨 AI for Science 共创计划

https://www.paddlepaddle.org.cn/science

  • 飞桨 PPSIG-Science 小组

https://www.paddlepaddle.org.cn/specialgroupdetail?id=9

  • 飞桨 PaddleScience 工具组件

https://github.com/PaddlePaddle/PaddleScience

你可能感兴趣的:(人工智能,计算机视觉,深度学习,paddlepaddle,百度)