矢量分析公式

a ⋅ ( b × c ) = b ⋅ ( c × a ) + c ⋅ ( a × b ) a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c a × ( b × c ) + ( b × c ) × a + c × ( a × b ) = 0 ( a × b ) ⋅ ( c × d ) = ( a ⋅ c ) ( b ⋅ d ) − ( a ⋅ d ) ( b ⋅ c ) ( a × b ) × ( c × d ) = [ ( a × b ) ⋅ d ] c − [ ( a × b ) ⋅ c ] d = [ ( c × d ) ⋅ a ] b − [ ( c × d ) ⋅ b ] a ▽ × ( ▽ ϕ ) = 0 ,    ▽ ⋅ ( ▽ × a ) = 0 ,    ▽ ⋅ ▽ ϕ = ▽ 2 ϕ = △ ϕ ▽ × ( ▽ × a ) = ▽ ( ▽ ⋅ a ) − △ a ,      △ a = ▽ ⋅ ( ▽ a ) ▽ ( ϕ ψ ) = ϕ ▽ ψ + ψ ▽ ϕ △ ( ϕ ψ ) = ϕ △ ψ + 2 ( ▽ ϕ ) ⋅ ( ▽ ψ ) + ψ △ ϕ ▽ ⋅ ( ϕ a ) = ϕ ▽ ⋅ a + a ⋅ ▽ ϕ ▽ × ( ϕ a ) = ϕ ▽ × a + ( ▽ ϕ ) × a ▽ ⋅ ( a × b ) = b ⋅ ( ▽ × a ) − a ⋅ ( ▽ × b ) ▽ ( a ⋅ b ) = a × ( ▽ × b ) + b × ( ▽ × a ) + ( b ⋅ ▽ ) a + ( a ⋅ ▽ ) b ▽ × ( a × b ) = a ( ▽ ⋅ b ) − b ( ▽ ⋅ a ) + ( b ⋅ ▽ ) a − ( a ⋅ ▽ ) b l = − i h r × ▽ ,      ▽ = i ∂ ∂ x + i ∂ ∂ y + k ∂ ∂ z ▽ = e r ∂ ∂ r − i h r 2 r × l △ = 1 r ∂ 2 ∂ r 2 r − l 2 h 2 r 2 ▽ ⋅ r = 3 ▽ × r = 0 ▽ ⋅ e r = 2 r ▽ × e r = 0 \begin{array}{l} a\cdot(b\times c)=b\cdot(c\times a)+c\cdot(a\times b)\\ a\times(b\times c)=(a\cdot c)b-(a\cdot b)c\\ a\times(b\times c) + (b\times c)\times a + c\times(a\times b)=0\\ (a\times b)\cdot(c\times d)=(a\cdot c)(b\cdot d)-(a\cdot d)(b\cdot c)\\ (a\times b)\times(c\times d)=[(a\times b)\cdot d]c-[(a\times b)\cdot c]d\\ = [(c\times d)\cdot a]b-[(c\times d)\cdot b]a\\ \triangledown \times(\triangledown\phi)=0,\; \triangledown \cdot(\triangledown\times a)=0, \;\triangledown\cdot\triangledown\phi=\triangledown^2\phi=\triangle \phi\\ \triangledown\times(\triangledown\times a)=\triangledown(\triangledown\cdot a)-\triangle a,\;  \triangle a=\triangledown\cdot(\triangledown a)\\ \triangledown(\phi\psi)=\phi\triangledown\psi+\psi\triangledown\phi\\ \triangle(\phi\psi)=\phi\triangle\psi+2(\triangledown\phi)\cdot(\triangledown\psi) +\psi \triangle \phi\\ \triangledown\cdot(\phi a)=\phi\triangledown\cdot a+a\cdot \triangledown \phi\\ \triangledown\times(\phi a)=\phi\triangledown\times a+(\triangledown\phi)\times a\\ \triangledown\cdot(a\times b)=b\cdot(\triangledown\times a)-a\cdot(\triangledown\times b)\\ \triangledown(a\cdot b)=a\times (\triangledown\times b)+b\times(\triangledown\times a)+(b\cdot\triangledown)a+(a\cdot \triangledown)b\\ \triangledown\times(a \times b)=a(\triangledown\cdot b)-b(\triangledown\cdot a)+(b\cdot\triangledown)a-(a\cdot\triangledown)b\\ l=-ihr\times \triangledown,\;\;\triangledown=i\frac\partial{\partial x}+i\frac\partial{\partial y}+k\frac\partial{\partial z}\\ \triangledown =e_r\frac\partial{\partial r}-\frac i{hr^2}r\times l\\ \triangle = \frac 1r\frac{\partial^2}{\partial r^2}r-\frac{l^2}{h^2r^2}\\ \triangledown\cdot r=3\\ \triangledown\times r=0\\ \triangledown\cdot e_r=\frac 2r \triangledown\times e_r=0 \end{array} a(b×c)=b(c×a)+c(a×b)a×(b×c)=(ac)b(ab)ca×(b×c)+(b×c)×a+c×(a×b)=0(a×b)(c×d)=(ac)(bd)(ad)(bc)(a×b)×(c×d)=[(a×b)d]c[(a×b)c]d=[(c×d)a]b[(c×d)b]a×(ϕ)=0(×a)=0ϕ=2ϕ=ϕ×(×a)=(a)a, a=(a)(ϕψ)=ϕψ+ψϕ(ϕψ)=ϕψ+2(ϕ)(ψ)+ψϕ(ϕa)=ϕa+aϕ×(ϕa)=ϕ×a+(ϕ)×a(a×b)=b(×a)a(×b)(ab)=a×(×b)+b×(×a)+(b)a+(a)b×(a×b)=a(b)b(a)+(b)a(a)bl=ihr×,=ix+iy+kz=errhr2ir×l=r1r22rh2r2l2r=3×r=0er=r2×er=0

你可能感兴趣的:(矢量分析公式)