- 2024 年高教社杯全国大学生数学建模竞赛 E 题 交通流量管控 详细思路+matlab代码+python代码+论文范例
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(不代写论文请勿盲目订阅)数学建模2024数学建模国赛2024数学建模国赛E题2024高教社杯
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!随着城市化进程的加快、机动车的快速普及,以及人们活动范围的不断扩大,城市道路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问
- 2024 年高教社杯全国大学生数学建模竞赛 D 题 反潜航空深弹命中概率问题 详细思路+matlab代码+python代码+论文范例
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(持续更新耐心等待)数学建模数学建模国赛2024数学建模国赛2024年高教社杯D题matlabpython
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!应用深水炸弹(简称深弹)反潜,曾是二战时期反潜的重要手段,而随着现代军事技术的发展,鱼雷已成为现代反潜作战的主要武器。但是,在海峡或浅
- AI人工智能深度学习算法:卷积神经网络的原理与应用
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:卷积神经网络的原理与应用作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的兴起与深度学习的崛起人工智能(AI)是指计算机科学的一个分支,旨在创造能够执行通常需要人类智能的任务的智能机器,例如学习、解决问题和决策。近年来,人工智能取得了显著的进展,这在很大程度上归功于深度学习的崛起,深度学习是一种强大的机器学习形式,它使用具有多个层的深度神经网络来学习数据中的复杂模式
- 人工智能深度学习入门指南
白猫a~
编程深度学习人工智能
随着人工智能(AI)技术的飞速发展,深度学习作为其重要分支,已经成为许多领域的研究热点。深度学习通过模拟人脑神经网络的运作方式,使得机器能够处理和分析海量的数据,从而实现更高级别的智能。本文将为你提供一份深度学习入门指南,帮助你快速掌握深度学习的基本知识和应用技能。1.了解深度学习基本概念在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。这些概念是深度学习的基
- 人工智能深度学习发展历程-纪年录
犟小孩
技术文档计算机视觉
前言为了理解模型之间的改进关系、明确深度学习的发展目标、提高自身对模型的深度理解、贯彻爱与和平的理念。总之,我做了如下表格。时间重大突破模型改进详细信息1847SGD随机梯度下降1995SVM支持向量机1982RNN循环神经网络,序列模型1986反向传播1997LSTM长短期时间记忆1998Lenet-5首次应用于手写识别2001随机森林2010ReLUrelu激活函数,解决梯度消失2012Dro
- 【NLP冲吖~】〇、NLP(自然语言处理、大纲)
漂泊老猫
自然语言处理NLP自然语言处理人工智能
0、自然语言处理自然语言处理是一门用于理解人类语言、情感和思想的技术,是人工智能深度学习领域的一项重要分支,去年爆火的GPT就是该分支的一个重要落地的应用。随着计算机算力的不断提升,自然语言处理技术近年来发展迅速,有代表模型BERT和GPT等;应用场景有chatbot、知识图谱、情感分析等。自然语言是与机器语言相对的一个概念,它是指人类在一定条件下自然形成和使用的口头或书面的语言,如汉语、英语、法
- 深度学习十年感悟,从入门到放弃
Ada's
Latex科研码上生活反思觉悟深度学习人工智能
写这篇在此主要是对自己对未来的思考和探索,绝没有指导和影响大家意思,我要准备放弃深度学习算法应用和研究去从事下一代操作系统和模拟信号处理芯片方面工作,主要是为自己以后事业机器人领域做点储备。14年左右从Octave及Matlab数学建模开始入门人工智能深度学习领域。当时情况是13年底我请教前辈后,在思考我们专业的未来是交通调度那么就是通信调度,最厉害的行业内也就是统计分析之类的很多体力性加上初步的
- 【ArcGIS Pro微课1000例】0046:深度学习--汽车检测
刘一哥GIS
《ArcGISarcgis深度学习汽车ArcGISpro人工智能
本实验讲述ArcGISPro中人工智能深度学习应用之–汽车检测。文章目录一、学习效果二、工具介绍三、案例实现四、注意事项一、学习效果采用深度学习工具,可以很快速精准的识别汽车。案例一:案例二:下面讲解GIS软件实现流程。二、工具介绍该案例演示的是ArcGISPro中深度学习工具中的【使用深度学习检测对象】,应用的模型是汽车检测模型CarDetection_USA.dlpk,大家可以从配套的实验数据
- PyTorch深度学习原理与实现
slience_me
机器学习深度学习pytorch人工智能
PyTorch深度学习原理与实现1.引言深度学习发展历程感知机网络(解决线性可分问题,20世纪40年代)BP神经网络(解决线性不可分问题,20世纪80年代)深度神经网络(海量图片分类,2010年左右)常见深度神经网络:CNN、RNN、LSTM、GRU、GAN、DBN、RBM……深度应用领域计算机视觉语音识别自然语言处理人机博弈深度学习、机器学习以及人工智能深度学习VS传统机器学习深度神经网络VS浅
- 亚马逊云AI大语言模型应用下的创新Amazon Transcribe的使用
lqj_本人
推广人工智能语言模型自然语言处理
Transcribe简介语音识别技术,也被称为自动语音识别(AutomaticSpeechRecognition,简称ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。语音识别技术已经发展了几十年,直到2009年,Hinton把人工智能深度学习解决方案引入语音识别中,语音识别才取得了巨大突破。AmazonTranscribe是一项自动语音识别(AS
- 第五章:人工智能深度学习教程-人工神经网络(第一节-人工神经网络及其应用)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理知识图谱生成对抗网络
当您阅读这篇文章时,您体内的哪个器官正在思考这个问题?当然是大脑啦!但你知道大脑是如何运作的吗?嗯,它有神经元或神经细胞,它们是大脑和神经系统的主要单位。这些神经元接收来自外界的感觉输入并进行处理,然后提供可能作为下一个神经元的输入的输出。这些神经元中的每一个都通过突触以复杂的排列方式与其他神经元相连。现在,您想知道这与人工神经网络有什么关系吗?嗯,人工神经网络是根据人脑中的神经元建模的。让我们详
- 第四章:人工智能深度学习教程-激活函数(第四节-深入理解激活函数)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘计算机视觉自然语言处理
什么是激活函数?在人工神经网络中,节点的激活函数定义了该节点或神经元对于给定输入或一组输入的输出。然后将该输出用作下一个节点的输入,依此类推,直到找到原始问题的所需解决方案。它将结果值映射到所需的范围,例如0到1或-1到1等。这取决于激活函数的选择。例如,使用逻辑激活函数会将实数域中的所有输入映射到0到1的范围内。二元分类问题的示例:在二元分类问题中,我们有一个输入x,比如一张图像,我们必须将其分
- 第四章:人工智能深度学习教程-激活函数(第二节-ANN 中激活函数的类型)
geeks老师
人工智能深度学习人工智能深度学习神经网络开发语言机器学习计算机视觉自然语言处理
生物神经网络以人工神经网络的形式建模,其中人工神经元模拟生物神经元的功能。人工神经元如下图所示:人工神经元的结构每个神经元由三个主要部分组成:一组“i”个突触,其权重为wi。信号xi形成具有权重wi的第i个突触的输入。任何权重的值都可以是正值或负值。正权重具有非凡的效果,而负权重对求和点的输出具有抑制作用。输入信号的求和点由相应的突触权重加权。因为它是加权输入信号的线性组合器或加法器,所以求和点的
- 第四章:人工智能深度学习教程-激活函数(第三节-Pytorch 中的激活函数)
geeks老师
人工智能深度学习人工智能深度学习开发语言pytorch机器学习自然语言处理语音识别
在本文中,我们将了解PyTorch激活函数。目录什么是激活函数以及为什么使用它们?Pytorch激活函数的类型ReLU激活函数:Python3LeakyReLU激活函数:Python3S形激活函数:Python3Tanh激活函数:Python3Softmax激活函数:Python3什么是激活函数以及为什么使用它们?激活函数是Pytorch的构建块。在讨论激活函数的类型之前,让我们首先了解人脑中神经
- 第四章:人工智能深度学习教程-激活函数(第一节-激活函数)
geeks老师
人工智能深度学习人工智能深度学习神经网络开发语言自然语言处理计算机视觉机器学习
简单来说,人工神经元计算其输入的“加权和”并添加偏差,如下图所示的净输入。从数学上来说,现在净输入的值可以是从-inf到+inf之间的任何值。神经元并不真正知道如何绑定到值,因此无法决定激发模式。因此激活函数是人工神经网络的重要组成部分。他们基本上决定神经元是否应该被激活。因此它限制了净输入的值。激活函数是一种非线性变换,我们在将输入发送到下一层神经元或将其最终确定为输出之前对输入进行非线性变换。
- 第三章:人工智能深度学习教程-基础神经网络(第三节-Tensorflow 中的多层感知器学习)
geeks老师
人工智能深度学习人工智能深度学习神经网络
在本文中,我们将了解多层感知器的概念及其使用TensorFlow库在Python中的实现。多层感知器多层感知也称为MLP。它是完全连接的密集层,可将任何输入维度转换为所需的维度。多层感知是具有多个层的神经网络。为了创建神经网络,我们将神经元组合在一起,以便某些神经元的输出是其他神经元的输入。神经网络和TensorFlow的简单介绍可以在这里找到:神经网络TensorFlow简介多层感知器有一个输入
- 第三章:人工智能深度学习教程-基础神经网络(第一节-ANN 和 BNN 的区别)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘自然语言处理语言模型
你有没有想过建造大脑之类的东西是什么感觉,这些东西是如何工作的,或者它们的作用是什么?让我们看看节点如何与神经元通信,以及人工神经网络和生物神经网络之间有什么区别。1.人工神经网络:人工神经网络(ANN)是一种基于前馈策略的神经网络。之所以这样称呼,是因为它们不断地通过节点传递信息,直到到达输出节点。这也被称为最简单的神经网络类型。ANN的一些优点:无论数据类型如何(线性或非线性),都能够学习。人
- 合工大《数字媒体技术》课程调研报告-视频伪造
晓宜
媒体音视频人工智能
2022年《数字媒体技术》课程调研报告“视频伪造”技术调研日期:2022.10.01调研报告摘要众所周知,人工智能正迎来第三次发展浪潮,它既给社会发展带来了巨大机遇,同时也带来了诸多风险,人工智能对国家安全的影响已成为世界各国的重要关切和研究议程。作为人工智能深度学习领域的一个分支,Deepfake(深度伪造)技术在近几年迅速兴起,为国家间的政治抹黑、军事欺骗、经济犯罪甚至恐怖主义行动等提供了新工
- 第三章:人工智能深度学习教程-基础神经网络(第六节-ML深度学习层列表)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理集成学习迁移学习
要指定所有层按顺序连接的神经网络的架构,请直接创建层数组。要指定层可以有多个输入或输出的网络架构,请使用LayerGraph对象。使用以下函数创建不同的图层类型。输入层:功能描述图像输入层将图像输入网络应用数据标准化序列输入层将序列数据输入到网络。可学习层:功能描述卷积2d层对输入应用滑动过滤器。它通过沿输入垂直和水平移动滤波器并计算权重和输入的点积,然后添加偏差项来对输入进行卷积。转置Conv2
- 第三章:人工智能深度学习教程-基础神经网络(第五节-了解多层前馈网络)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘自然语言处理目标检测
让我们了解反向传播网络(BPN)中的误差是如何计算的以及权重是如何更新的。考虑下图中的以下网络。反向传播网络(BPN)上图中的网络是一个简单的多层前馈网络或反向传播网络。它包含三层,输入层有两个神经元x1和x2,隐藏层有两个神经元z1和z2,输出层有一个神经元yin。现在让我们写下每个神经元的权重和偏差向量。注:权重是随机取的。输入层:i/p–[x1x2]=[01]这里,由于它是输入层,因此仅存在
- 第三章:人工智能深度学习教程-基础神经网络(第四节-从头开始的具有前向和反向传播的深度神经网络 – Python)
geeks老师
人工智能深度学习python开发语言AI编程深度学习机器学习人工智能自然语言处理
本文旨在从头开始实现深度神经网络。我们将实现一个深度神经网络,其中包含一个具有四个单元的隐藏层和一个输出层。实施将从头开始,并实施以下步骤。算法:1.可视化输入数据2.确定权重和偏置矩阵的形状3.初始化矩阵、要使用的函数4.前向传播方法的实现5.实施成本计算6.反向传播和优化7.预测和可视化输出模型架构:模型架构如下图所示,其中隐藏层使用双曲正切作为激活函数,而输出层(即分类问题)使用sigmoi
- 第三章:人工智能深度学习教程-基础神经网络(第二节-ANN 和 BNN 的区别)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理生成对抗网络语言模型
在本文中,我们将了解单层感知器及其使用TensorFlow库在Python中的实现。神经网络的工作方式与我们的生物神经元的工作方式相同。生物神经元的结构生物神经元具有三个基本功能接收外部信号。处理信号并增强是否需要发送信息。将信号传递给目标细胞,目标细胞可以是另一个神经元或腺体。同样,神经网络也能发挥作用。机器学习中的神经网络什么是单层感知器?它是最古老且最早引入的神经网络之一。它是由弗兰克·罗森
- 第三章:人工智能深度学习教程-人工智能与机器学习与深度学习之间的区别
geeks老师
人工智能深度学习人工智能深度学习机器学习图搜索算法生成对抗网络视觉检测自动驾驶
人工智能基本上是通过一组规则(算法)将人类智能融入机器的机制。人工智能是两个词的组合:“人工”是指由人类或非自然物体制造的东西,“智能”是指相应地理解或思考的能力。另一个定义可能是“人工智能基本上是训练机器(计算机)模仿人脑及其思维能力的研究”。人工智能侧重于3个主要方面(技能):学习、推理和自我纠正,以获得尽可能最大的效率。机器学习:机器学习基本上是一种研究/过程,它使系统(计算机)能够通过其拥
- 第二章:人工智能深度学习教程-深度学习简介
geeks老师
人工智能深度学习人工智能深度学习数据挖掘机器学习神经网络自然语言处理语音识别
深度学习是基于人工神经网络的机器学习的一个分支。它能够学习数据中的复杂模式和关系。在深度学习中,我们不需要显式地对所有内容进行编程。近年来,由于处理能力的进步和大型数据集的可用性,它变得越来越流行。因为它基于人工神经网络(ANN),也称为深度神经网络(DNN)。这些神经网络的灵感来自于人脑生物神经元的结构和功能,它们旨在从大量数据中学习。深度学习是机器学习的一个子领域,涉及使用神经网络来建模和解决
- 人工智能与深度神经网络,人工智能人工神经网络
「已注销」
人工智能dnn机器学习神经网络
人工智能中神经网络训练过程谷歌人工智能写作项目:神经网络伪原创人工智能深度学习的基础知识?在提及人工智能技术的时候,对于深度学习的概念我们就需要了解,只有这样才能更加容易理解人工智能的运行原理,今天,昆明电脑培训就一起来了解一下深度学习的一些基础知识写作猫。首先,什么是学习率?学习率(LearningRate,LR。常用η表示。)是一个超参数,考虑到损失梯度,它控制着我们在多大程度上调整网络的权重
- 第990期机器学习日报(2017-06-04)
ai100_ml
机器学习日报2017-06-04机器学习、深度学习研究者10张速查表@网路冷眼ACL2017杰出论文公布,国内四篇论文入选@机器之心Synced如何解释机器学习模型和结果@wx:全球人工智能深度学习多任务学习综述@wx:全球人工智能亚马逊AI博客:用机器学习自动调优数据库管理系统@网路冷眼@好东西传送门出品,由@AI100运营,过往目录见http://ml.memect.com订阅:关注微信公众号
- 开篇:百花齐放,百家争鸣
静电屏蔽
生死无门,福自己造。2018新春伊始,自媒体的春天也跟随而来。回顾2017年,这是神奇的一年!直播迎来黄金时代,人工智能深度学习充斥人们的视野,虚拟货币席卷全球,区块链爆发,游戏电竞迎来吃鸡时代,国内巨头动作频繁,首富几经易主,共享经济大行其道,还有太多太多。注定过去的一年是划时代的纪元,此前从未见过如此热闹的互联网生活!百度移动端布局以搜索为入口,成效可喜。过去巨头们拼的是平台,硬件,技术,哪知
- 初识人工智能
熊子豪
姓名:熊子豪学号:19011210143转载自https://blog.csdn.net/Harpoon_fly/article/details/84074645【嵌牛导读】我们正处在深度学习的时期,把握住机会在人工智能深度学习还未大量爆发的时期,多了解学习下,让自己跟进时代的步伐,当然未来的强化学习更是最主要的方向,技术更新迭代,你做好准备了么?【嵌牛鼻子】人工智能。【嵌牛提问】什么是人工智能,
- 人工智能深度学习,100天掌握所有人工智能深度学习 –第二章:( 第 1 – 10 天第一节线性代数-线性方程组)
wly476923083
人工智能人工智能深度学习线性代数机器学习深度学习神经网络自然语言处理数据挖掘目标检测
矩阵的迹:设A=[aij]nxn是n阶方阵,则对角元素之和称为矩阵的迹,记为tr(A)。tr(A)=a11+a22+a33+……….+ann矩阵迹的性质:设A和B为任意两个n阶方阵,则tr(kA)=ktr(A)其中k是标量。tr(A+B)=tr(A)+tr(B)tr(AB)=tr(A)-tr(B)tr(AB)=tr(BA)线性方程组的解:线性方程可以有三种可能的解:没有解决方案独特的解决方案无限解
- 人工智能深度学习,100天掌握所有人工智能深度学习 –第一章: 初学者完整指南(持续更新)
wly476923083
人工智能人工智能深度学习决策树算法机器学习深度学习人工智能数据库神经网络
它涉及开发可以自动从数据中学习模式和见解的算法,而无需显式编程。近年来,随着企业发现机器学习在推动创新、改进决策和获得竞争优势方面的潜力,机器学习变得越来越受欢迎。就业行业中的机器学习如果您有兴趣从事机器学习职业,您可能想知道您可以选择的薪水和职业选择。机器学习专业人士的需求量很大,并且可以获得有竞争力的薪水。根据Glassdoor的数据,美国机器学习工程师的平均基本工资约为每年114,000美元
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR