自定义类型:结构体,枚举,联合

文章目录

1.结构体的声明

2.位段

3. 枚举

4. 联合(共用体)

文章内容 

1.结构体的声明

1.1 结构的基础知识

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

1.2 结构的声明

struct tag
{
member-list;
}variable-list;

例如描述一个学生:

struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢
//struct Book
//{
//	char name[20];
//	float price;
//	char id[12];
//};

//int main()
//{
//	struct Book b1 = {"明哥C语言", 55.5f, "MGC001"};
//
//	return 0;
//}

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。

比如:

//匿名结构体类型
struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}a[20], *p;

而且匿名结构体只能使用一次! 

那么问题来了?

//在上面代码的基础上,下面的代码合法吗?
p = &x;

警告:
编译器会把上面的两个声明当成完全不同的两个类型。
所以是非法的。

1.4 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

//代码1
struct Node
{
int data;
struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?

正确的自引用方式:

//代码2
struct Node
{
int data;
struct Node* next;
};
//代码3
typedef struct
{
int data;
Node* next;
}Node;
//这样写代码,可行否?
//解决方案:
typedef struct Node
{
int data;
struct Node* next;
}Node;

 这种写法也是不行的,这样就涉及到先有鸡还是先有蛋的问题。所以我们还是老老实实按照规矩来写。

1.5 结构体变量的定义和初始化

有了结构体类型,那如何定义变量,其实很简单。

struct Point
{
int x;
int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu     //类型声明
{
char name[15];//名字
int age;    //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
int data;
struct Point p;
struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

1.6 结构体内存对齐

我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐

首先介绍结构体基本使用规则

1. 第一个成员在与结构体变量偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值
         VS中默认的值为8
         Linux中没有默认对齐数,对齐数就是成员自身的大小
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处结构体的整
体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍

自定义类型:结构体,枚举,联合_第1张图片

 这段代码结构体里面内容一样,顺序不一样,但是结构体的大小就是不一样的。这就涉及到结构体的内存对齐了。

分析:

自定义类型:结构体,枚举,联合_第2张图片

  s在内存中开辟一块内存,结构的第一个成员放在偏移量为0的地址处,就是红色的内存处,第二个成员是int类型的,当前版本的对齐数是8(vs2019),int的是4,所以对齐数是4,我们只能从第四个内存的位置放置,1到3的内存就舍弃了,紧接着就放char 类型,对齐数是1,所以直接放,这时我们使用了,九个内存里,但是成员中最大对齐数是4,不是9的倍数,所以我们还要在浪费三个内存的位置,来凑出来12个内存,这样就是这个结构体的大小了。

自定义类型:结构体,枚举,联合_第3张图片

 这个结构体,跟上个结构体分析的方法相似,我们可以得到的结论是,尽量让较小的成员放在一起。

自定义类型:结构体,枚举,联合_第4张图片

 这种情况是嵌套了结构体,s3最大的对齐数是8且s3的大小是16,所以s3应该从偏移量为8的位置开始存储,而s4结构体中最大对齐数是8 s3当中也是8,所以s4这个结构体的大小应该是8的倍数,经过排列,s4的大小就是32。

为什么存在内存对齐?

1. 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访
问。

总体来说:
结构体的内存对齐是拿空间来换取时间的做法。

1.7 修改默认对齐数
之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include 
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
  //输出的结果是什么?
  printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));
  return 0;
}

结论:
结构在对齐方式不合适的时候,我们可以自己更改默认对齐数。

1.8 结构体传参
直接上代码:

struct S
{
int data[1000];
int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s);  //传结构体
print2(&s); //传地址
return 0;
}

上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的
下降。

结论:
结构体传参的时候,要传结构体的地址。

2.位段

2.1 什么是位段

位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。

比如:

struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};

A就是一个位段类型。
那位段A的大小是多少?

2.2 位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

//一个例子
struct S
{
char a:3;
char b:4;
char c:5;
char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

 

自定义类型:结构体,枚举,联合_第5张图片

 

自定义类型:结构体,枚举,联合_第6张图片

2.3 位段的跨平台问题
1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机
器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是
舍弃剩余的位还是利用,这是不确定的。

 

总结:

 跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

2.4 位段的应用

自定义类型:结构体,枚举,联合_第7张图片

 

3. 枚举

枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。

性别有:男、女、保密,也可以一一列举。

月份有12个月,也可以一一列举

3.1 枚举类型的定义
 

enum Day//星期
{
Mon,
Tues,
Wed,
Thur,
Fri,
Sat,
Sun
};
enum Sex//性别
{
MALE,
FEMALE,
SECRET
};
enum Color//颜色
{
RED,
GREEN,
BLUE
};

 以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,依次递增1,当然在声明枚举类型的时候也可以赋初值。
例如:

enum Color//颜色
{
RED=1,
GREEN=2,
BLUE=4
};

3.2 枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
1. 增加代码的可读性和可维护性
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 便于调试
4. 使用方便,一次可以定义多个常量

3.3 枚举的使用

enum Color//颜色
{
RED=1,
GREEN=2,
BLUE=4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
clr = 5;        //ok??

4. 联合(共用体)

4.1 联合类型的定义

联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如:

//联合类型的声明
union Un
{
char c;
int i;
};
//联合变量的定义
union Un un;
//计算连个变量的大小
printf("%d\n", sizeof(un));

4.2 联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联
合至少得有能力保存最大的那个成员)。

union Un
{
int i;
char c;
};
union Un un;
// 下面输出的结果是一样的吗?
printf("%d\n", &(un.i));
printf("%d\n", &(un.c));
//下面输出的结果是什么?
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);

4.3 联合大小的计算

 联合的大小至少是最大成员的大小。
 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
比如:

自定义类型:结构体,枚举,联合_第8张图片

 

你可能感兴趣的:(c++,开发语言,c语言)