LLM - 基于 Vicuna-13B 参数计算搭建私有 ChatGPT 在线聊天

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/131312366

LLM - 基于 Vicuna-13B 参数计算搭建私有 ChatGPT 在线聊天_第1张图片

LLaMA 和 Vicuna 都是大语言模型(LLM),两者的差异如下:

  • LLaMA (Large Language Model Meta AI):开放和高效的基础语言模型,这是一系列从7B到65B参数的语言模型,使用公开可用的数据集进行训练,没有使用专有和无法获取的数据集。LLaMA-13B在大多数基准测试中超越了GPT-3 (175B),LLaMA-65B 与最好的模型 Chinchilla-70B 和 PaLM-540B 相当。预训练数据集是多个来源的混合,包括CommonCrawl、C4、Github、Wikipedia、Gutenberg、Books3、ArXiv和Stack Exchange等,总共包含约1.4T个标记。论文:LLaMA: Open and Efficient Foundation Language Models

  • Vicuna: 由 UC伯克利、CMU、斯坦福等机构的学者,在 2022 年发布的一种改进版的 LLaMA,使用了用户共享的对话数据(约70K samples)来进行全量微调,并且降低了训练成本。通过在来自 ShareGPT 的用户共享对话上微调 LLaMA 而训练的,使用 GPT-4 作为评判标准的初步评估显示,Vicuna-13B 在 OpenAI ChatGPT 和 Google Bard 的质量上达到了 90% 以上,同时在 90% 的情况下超过了其他模型,如 LLaMA 和 Stanford Alpaca。

这两种算法都在一些对话任务上表现出了优异的效果,但是也存在着一些局限性,比如编程、推理、数学以及事实准确性等方面的不足。目前,很多大语言模型算法都是基于 Vicuna 进行对齐,例如 DrugChat 等。因此,需要配置 Vicuna 的模型参数。

1. 配置工程

需要配置的工程有2个,都来源于 Hugging Face:

  1. Vicuna-13B:https://huggingface.co/lmsys/vicuna-13b-delta-v0
  2. LLaMA-13B-hf:https://huggingface.co/decapoda-research/llama-13b-hf

下载方式,可以参考 Server - 使用网盘快速下载 Hugging Face 大模型,使用网盘下载速度要快于Git LFS

普通方式:

git lfs install
git clone https://huggingface.co/lmsys/vicuna-7b-delta-v0.git
cd vicuna-7b-delta-v0
git lfs pull

git lfs install
git clone https://huggingface.co/decapoda-research/llama-13b-hf.git
cd llama-13b-hf
git lfs pull

其中,bin 文件 和 model 文件较大,可以离线下载之后,再覆盖。

git clone 如果遇到 Bug,TCP connection reset by peer,建议使用 ssh 的方式下载,需要简单配置一下,参考 Server - 使用网盘快速下载 Hugging Face 大模型。

2. 组合权重

不同版本的 Vicuna,使用不同的 FastChat 版本,例如v0,使用 FastChat 版本是v0.1.10。

具体配置参考:GitHub - vicuna_weights_version.md

LLM - 基于 Vicuna-13B 参数计算搭建私有 ChatGPT 在线聊天_第2张图片

配置环境:

conda create -n vicuna python=3.8
source activate vicuna
pip install fschat==0.1.10  # 注意版本

下载工程,注意切换版本:

git clone https://github.com/lm-sys/FastChat.git
cd FastChat
git checkout v0.1.10  # 注意版本

更新 transformers 库,因为 transformers 库,随着版本不同,包括的 Tokenizer 和 Model 的函数不同:

pip install --upgrade transformers

查看 fschat 和 transformers 的版本,如下:

pip show fschat transformers
Name: fschat
Version: 0.1.10
---
Name: transformers
Version: 4.28.1

修改 FastChat 工程的 fastchat/model/apply_delta.py 文件,版本不同,函数不同:

AutoTokenizer 全部替换为 LlamaTokenizer
AutoModelForCausalLM 全部替换为 LlamaForCausalLM

即:

...
from transformers import LlamaTokenizer, LlamaForCausalLM

def apply_delta(base_model_path, target_model_path, delta_path):
    print(f"Loading the base model from {base_model_path}")
    base = LlamaForCausalLM.from_pretrained(
        base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)

    print(f"Loading the delta from {delta_path}")
    delta = LlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
    delta_tokenizer = LlamaTokenizer.from_pretrained(delta_path, use_fast=False)

    DEFAULT_PAD_TOKEN = "[PAD]"
    base_tokenizer = LlamaTokenizer.from_pretrained(base_model_path, use_fast=False)
    num_new_tokens = base_tokenizer.add_special_tokens(dict(pad_token=DEFAULT_PAD_TOKEN))
...

否则报错:

ValueError: Tokenizer class LLaMATokenizer does not exist or is not currently imported.

接着,组合模型权重:

  • 脚本:apply_delta.py
  • llama权重:llama-13b-hf/
  • vicuna权重:vicuna-13b-delta-v0/
  • 输出权重:vicuna-13b-weight/
CUDA_VISIBLE_DEVICES=1 python FastChat/fastchat/model/apply_delta.py --base-model-path llama-13b-hf/  --delta-path vicuna-13b-delta-v0/ --target-model-path vicuna-13b-weight/

3. 测试权重

执行脚本,即可命令行,使用:

CUDA_VISIBLE_DEVICES=3,4 python -m fastchat.serve.cli --model-path ./vicuna-13b-weight --style rich  --num-gpus 2

运行如下:

  • 问题1:let’s talk something about biological pharmacy ?
  • 问题2:What are the big pharmaceutical companies in the world ?

日志如下:

LLM - 基于 Vicuna-13B 参数计算搭建私有 ChatGPT 在线聊天_第3张图片

测试成功。

参考:

  • CSDN - Vicuna 模型学习与实战
  • GitHub - lm-sys/FastChat
  • GitHub - vicuna_weights_version.md
  • 知乎 -【LLMs 入门实战 —— 八 】MiniGPT-4 模型学习与实战
  • GitHub - Vision-CAIR/MiniGPT-4
  • Server - 使用网盘快速下载 Hugging Face 大模型

你可能感兴趣的:(大模型(ChatGPT),chatgpt,人工智能)