C. Multiplicity(DP + 分解因数)

Problem - C - Codeforces

C. Multiplicity(DP + 分解因数)_第1张图片

给定一个整数数组a1,a2,...,an。

如果可以从a中删除一些元素得到b,则称数组b为a的子序列。

当且仅当对于每个i(1≤i≤k),bi是i的倍数时,数组b1,b2,...,bk被称为好。

在模109+7下找到a中好的子序列的数量。

如果两个子序列的包含数字的索引集合不同,则认为它们是不同的。也就是说,在比较子序列时,元素的值不重要。特别地,数组a恰好有2n-1个不同的子序列(不包括空子序列)。

输入

第一行包含一个整数n(1≤n≤100000)- 数组a的长度。

接下来一行包含整数a1,a2,...,an(1≤ai≤106)。

输出

仅打印一个整数-在模109+7下取的好子序列数量。

Examples

input

Copy

2
1 2

output

Copy

3

input

Copy

5
2 2 1 22 14

output

Copy

13

 

在第一个例子中,所有三个非空可能的子序列都是好的:{1},{1,2},{2}。在第二个例子中,可能的好子序列为:{2},{2,2},{2,22},{2,14},{2},{2,22},{2,14},{1},{1,22},{1,14},{22},{22,14},{14}。

请注意,某些子序列会列在多次,因为它们在原始数组中出现多次。

题解:
首先分解因数,把每个数的所有因数,存到其vector数组v[i]中,接着dp即可,

dp[i][j]:前i个且第i个的长度为j的序列个数

dp[i][j]+=dp[i-1][j]; 前i个,且当前i为终点长度为j的序列
if(a[i]%j==0) dp[i][j]+=dp[i-1][j-1];

肯定还要接着进行优化,由于j并不是都满足,所以我们利用前面我们分解的因数可以优化(dp[j]代表长度为j的b数组有多少种答案)

dp[v[i][j]] = dp[v[i][j]] + dp[v[i][j] - 1]肯定由比当前因子少一的转移过来

为啥10000*sqrt(1e6)不会t,因为题中保证了,数组a恰好有2n-1个不同的子序列(不包括空子序列)

还要就是dp过程,类似01背包只能拿一次,所以从后往前DP

#include 
#include 
#include 
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
#define int long long
typedef pair PII;
int mod = 1e9 + 7;
vector v[100050];
int dp[1000050];
void solve()
{
	int n;
	cin >> n;
	for(int i = 1;i <= n;i++)
	{
		int x;
		cin >> x;
		for(int j = 1;j*j <= x;j++)
		{
			if(x%j == 0)
			{
				if(j*j == x)
				{
					v[i].push_back(j);
				}
				else
				{
					v[i].push_back(j);
					v[i].push_back(x/j);
				}
			}
		}
		sort(v[i].begin(),v[i].end());
	}
	dp[0] = 1;
	for(int i = 1;i <= n;i++)
	{
		for(int j = v[i].size() - 1;j >= 0;j--)
		{
			dp[v[i][j]] = (dp[v[i][j]] + dp[v[i][j] - 1])%mod;
		}
	}
	int ans = 0;
	for(int i = 1;i <= 100000;i++)
	{
		ans = (ans + dp[i])%mod;
	} 
	cout << ans;
}
signed main()
{
//	ios::sync_with_stdio(0 );
//	cin.tie(0);cout.tie(0);
	int t = 1;
//	cin >> t;
	while(t--)
	{
		solve(); 
	}
}

你可能感兴趣的:(c语言,算法,开发语言)