之前的“trackinfo数据清洗”例子中为使用combiner,这个列子通过改写mapper和reducer以支持combiner,同时使用1.75因子计算的reducer task数量。
http://gqm.iteye.com/blog/1935541
Mapper
public class TrackInfoCleansingMapper extends
Mapper<Object, Text, Text, TrackInfoArrayWritable> {
private Text user = new Text();
private TrackInfo track = new TrackInfo();
private TrackInfoArrayWritable array = new TrackInfoArrayWritable();
static final int USER_MIN_LEN = 6;
@Override
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString(), ",");
int index = 0;
while (itr.hasMoreTokens()) {
if (index == 0) {
track.getLocation().getMainLoc().set(itr.nextToken());
} else if (index == 1) {
track.getLocation().getSubLoc().set(itr.nextToken());
} else if (index == 4) {
user.set(itr.nextToken());
if (user.getLength() < USER_MIN_LEN) {
// illegal user, skip line
break;
}
} else if (index == 6) {
track.getTrackTime().set(itr.nextToken());
array.set(new TrackInfo[] { track });
context.write(user, array);
// the map intermediate data is OK, skip other info
break;
} else {
itr.nextToken();
}
index++;
}
}
}
Reducer
public class TrackInfoCleansingReducer extends
Reducer<Text, TrackInfoArrayWritable, Text, TrackInfoArrayWritable> {
private TrackInfoArrayWritable tracks = new TrackInfoArrayWritable();
private List<TrackInfo> rentList = new ArrayList<>();
@Override
protected void reduce(Text key, Iterable<TrackInfoArrayWritable> values,
Context context) throws IOException, InterruptedException {
int index = 0;
List<TrackInfo> list = new LinkedList<>();
TrackInfo rent = null;
TrackInfo info = null;
for (TrackInfoArrayWritable array : values) {
for (Writable item : array.get()) {
info = (TrackInfo) item;
// if rentList has item, then use it,
// otherwise create a new item to use and add it to the
// rentList.
if (index < rentList.size()) {
rent = rentList.get(index);
} else {
// new instance
rent = new TrackInfo();
rentList.add(rent);
}
index++;
// copy info to rent
rent.getTrackTime().set(info.getTrackTime().toString());
rent.getLocation().getMainLoc()
.set(info.getLocation().getMainLoc().toString());
rent.getLocation().getSubLoc()
.set(info.getLocation().getSubLoc().toString());
list.add(rent);
}
}
Collections.sort(list, new Comparator<TrackInfo>() {
@Override
public int compare(TrackInfo o1, TrackInfo o2) {
return o1.compareTo(o2);
}
});
TrackInfo[] temp = new TrackInfo[list.size()];
list.toArray(temp);
tracks.set(temp);
context.write(key, tracks);
}
}
Driver
public class TrackInfoCleansing extends Configured implements Tool {
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new TrackInfoCleansing(), args);
System.exit(exitCode);
}
@Override
public int run(String[] args) throws Exception {
if(args.length != 2){
System.out.printf("Usage %s [generic options] <in> <out>\n", getClass().getName());
ToolRunner.printGenericCommandUsage(System.out);
return -1;
}
Configuration conf = new Configuration();
conf.set("fs.default.name", "hdfs://node04vm01:9000");
Job job = new Job(conf, "track info cleansing");
job.setNumReduceTasks(7);
job.setJarByClass(TrackInfoCleansing.class);
job.setMapperClass(TrackInfoCleansingMapper.class);
job.setCombinerClass(TrackInfoCleansingReducer.class);
job.setReducerClass(TrackInfoCleansingReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(TrackInfoArrayWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(TrackInfoArrayWritable.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job.waitForCompletion(true) ? 0 : 1;
}
}
hadoop job -status job_201308281640_0010
Job: job_201308281640_0010
file: hdfs://node04vm01:9000/tmp/hadoop-hue/mapred/staging/hue/.staging/job_201308281640_0010/job.xml
tracking URL: http://node04vm01:50030/jobdetails.jsp?jobid=job_201308281640_0010
map() completion: 1.0
reduce() completion: 1.0
Counters: 30
Job Counters
Launched reduce tasks=9
SLOTS_MILLIS_MAPS=4936623
Total time spent by all reduces waiting after reserving slots (ms)=0
Total time spent by all maps waiting after reserving slots (ms)=0
Rack-local map tasks=2
Launched map tasks=274
Data-local map tasks=272
SLOTS_MILLIS_REDUCES=4300151
File Output Format Counters
Bytes Written=5875653493
FileSystemCounters
FILE_BYTES_READ=17022188257
HDFS_BYTES_READ=17510078986
FILE_BYTES_WRITTEN=25331743227
HDFS_BYTES_WRITTEN=5875653493
File Input Format Counters
Bytes Read=17510042672
Map-Reduce Framework
Map output materialized bytes=8306340148
Map input records=254655920
Reduce shuffle bytes=8306340148
Spilled Records=357829155
Map output bytes=9004010008
Total committed heap usage (bytes)=56888983552
CPU time spent (ms)=4844340
Combine input records=499067793
SPLIT_RAW_BYTES=36314
Reduce input records=41986484
Reduce input groups=3651914
Combine output records=337948330
Physical memory (bytes) snapshot=71151529984
Reduce output records=3651914
Virtual memory (bytes) snapshot=210540683264
Map output records=203105947
总结
- 使用Combiner对HDFS度读写是一样的,说明并不影响结果。
- 使用Combiner可以减少本地FS的IO,即减少mapper阶段的中间结果的FS的IO。
- 使用Combiner在减少中间结果的IO的过程也减少了Reducer的shuffle阶段network io,即copy的数量,也减少了reducer input records的量。
- 使用Combiner增加了mapper阶段的运算以及内存的消耗。