Pytorch——根据2D bounding box生成点采样空间

文章目录

    • 函数
    • 完整回答

函数

def generate_sampling_points(self, boxes):
    '''
	boxes: [num_boxes, 4, 2]
	'''
    num_boxes = boxes.size(0)
    num_points = 7 	# 这里生成7x7的采样空间

    # 生成网格坐标
    x = torch.linspace(-0.5, 0.5, num_points)
    y = torch.linspace(-0.5, 0.5, num_points)
    grid_x, grid_y = torch.meshgrid(x, y)  # 形状为 [num_points, num_points]

    # 将网格坐标扩展为每个box的采样点坐标
    grid_x = grid_x.view(1, num_points, num_points).expand(num_boxes, -1, -1)
    grid_y = grid_y.view(1, num_points, num_points).expand(num_boxes, -1, -1)

    # 计算每个box的中心坐标和宽高
    center_x = (boxes[:, 0, 0] + boxes[:, 2, 0]) / 2.0
    center_y = (boxes[:, 0, 1] + boxes[:, 2, 1]) / 2.0
    width = boxes[:, 2, 0] - boxes[:, 0, 0]
    height = boxes[:, 2, 1] - boxes[:, 0, 1]

    # 根据box的中心坐标和宽高计算采样点坐标
    sample_x = center_x.view(num_boxes, 1, 1) + grid_x * width.view(num_boxes, 1, 1)
    sample_y = center_y.view(num_boxes, 1, 1) + grid_y * height.view(num_boxes, 1, 1)

    # 组合采样点的x和y坐标
    sampling_points = torch.stack([sample_x, sample_y], dim=3)  # 形状为 [num_boxes, num_points, num_points, 2]

    # 将采样点坐标展平成形状为 [num_boxes, num_points*num_points, 2] 的张量
    sampling_points = sampling_points.view(num_boxes, -1, 2)

    return sampling_points

完整回答

下面是使用PyTorch生成给定n个box中的7x7等间距采样空间,并生成一个形状为[n, 49, 2]的采样点集合的示例代码:

import torch

def generate_sampling_points(boxes):
    num_boxes = boxes.size(0)
    num_points = 7

    # 生成网格坐标
    x = torch.linspace(-0.5, 0.5, num_points)
    y = torch.linspace(-0.5, 0.5, num_points)
    grid_x, grid_y = torch.meshgrid(x, y)  # 形状为 [num_points, num_points]

    # 将网格坐标扩展为每个box的采样点坐标
    grid_x = grid_x.view(1, num_points, num_points).expand(num_boxes, -1, -1)
    grid_y = grid_y.view(1, num_points, num_points).expand(num_boxes, -1, -1)

    # 计算每个box的中心坐标和宽高
    center_x = (boxes[:, 0, 0] + boxes[:, 2, 0]) / 2.0
    center_y = (boxes[:, 0, 1] + boxes[:, 2, 1]) / 2.0
    width = boxes[:, 2, 0] - boxes[:, 0, 0]
    height = boxes[:, 2, 1] - boxes[:, 0, 1]

    # 根据box的中心坐标和宽高计算采样点坐标
    sample_x = center_x.view(num_boxes, 1, 1) + grid_x * width.view(num_boxes, 1, 1)
    sample_y = center_y.view(num_boxes, 1, 1) + grid_y * height.view(num_boxes, 1, 1)

    # 组合采样点的x和y坐标
    sampling_points = torch.stack([sample_x, sample_y], dim=3)  # 形状为 [num_boxes, num_points, num_points, 2]

    # 将采样点坐标展平成形状为 [num_boxes, num_points*num_points, 2] 的张量
    sampling_points = sampling_points.view(num_boxes, -1, 2)

    return sampling_points

# 示例使用
# 假设有2个box,每个box的顶点坐标为 4x2 的张量
boxes = torch.tensor([
    [[0.2, 0.3], [0.4, 0.3], [0.4, 0.5], [0.2, 0.5]],  # box 1
    [[-0.3, -0.4], [-0.1, -0.4], [-0.1, -0.2], [-0.3, -0.2]]  # box 2
])

sampling_points = generate_sampling_points(boxes)
print(sampling_points.shape)  # 输出: torch.Size([2, 49, 2])

在上述示例代码中,generate_sampling_points函数接受一个张量boxes,其形状为 [n, 4, 2],其中n是box的数量。函数首先生成一个7

x7的等间距网格坐标,然后根据每个box的中心坐标和宽高计算采样点的坐标。最后,将采样点的坐标展平成形状为 [n, 49, 2] 的张量,并返回该结果。

请注意,示例代码中的坐标范围是在 [-0.5, 0.5] 内进行归一化处理,以适应等间距的网格。如果你的实际应用需要不同的坐标范围或网格密度,可以相应地进行调整。

参考:

  • ChatGPT

你可能感兴趣的:(pytorch,pytorch,python,数学建模)