机器学习技术(三)——机器学习实践案例总体流程

机器学习实践案例总体流程

文章目录

  • 机器学习实践案例总体流程
    • 一、引言
    • 二、案例
      • 1、决策树对鸢尾花分类
        • 1.数据来源
        • 2.数据导入及描述
        • 3.数据划分与特征处理
        • 4.建模预测
      • 2、各类回归波士顿房价预测
        • 1.案例数据
        • 2.导入所需的包和数据集
        • 3.载入数据集,查看数据属性,可视化
      • 3、分割数据集,并对数据集进行预处理
      • 4、利用各类回归模型,对数据集进行建模
      • 5、利用网格搜索对超参数进行调节

机器学习技术(三)——机器学习实践案例总体流程_第1张图片

一、引言

前面学习了一些基础知识,但还没有步入机器学习算法。通过两个案例,来掌握机器学习模型的训练与评估、机器学习模型搭建的总体流程以及特征处理、决策树模型、交叉检验、网格搜索等常用数据挖掘方法的知识。

二、案例

1、决策树对鸢尾花分类

1.数据来源

本道题目使用数据集为“iris.data”。这份数据集包含3种不同类型的鸢尾花 (Setosa, Versicolour, and Virginica) 的数据,数据形状为150x5, 五列字段分别为sepal_length(萼片长度)、sepal_width(萼片宽度)、petal_length(花瓣长度)、petal_width(花瓣宽度)、类别。

2.数据导入及描述

导入数组处理numpy、数据分析pandas模块、可视化模块matplotlib。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

导入数据集文件 “iris.data”,命名为iris_data,将5列数据列名设置为’sepal_length_cm’, ‘sepal_width_cm’, ‘petal_length_cm’, ‘petal_width_cm’, ‘class’。

iris_data = pd.read_csv('./iris.data')
iris_data.columns = ['sepal_length_cm', 'sepal_width_cm', 'petal_length_cm', 'petal_width_cm', 'class']

查看(除表头外)前 5 行数据,查看数据描述信息。

iris_data.head()
iris_data.describe()

输出:

sepal_length_cm sepal_width_cm petal_length_cm petal_width_cm
count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.057333 3.758000 1.199333
std 0.828066 0.435866 1.765298 0.762238
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000

3.数据划分与特征处理

将数据集切分为4列特征和类别,导入sklearn库中的train_test_split方法将数据集的75%作为训练集和25%作为测试集。

from sklearn.model_selection import train_test_split
all_inputs = iris_data[['sepal_length_cm', 'sepal_width_cm', 'petal_length_cm', 'petal_width_cm']].values
all_classes = iris_data['class'].values
(training_inputs,testing_inputs,training_classes,testing_classes) = train_test_split(all_inputs, all_classes, train_size=0.75, random_state=1)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wCJdleQM-1688539473388)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20230703151156315.png)]

4.建模预测

导入sklearn中的DecisionTreeClassifier,构建决策树模型进行分类模型训练,并在测试集上进行评分。

from sklearn.tree import DecisionTreeClassifier
decision_tree_classifier = DecisionTreeClassifier()
decision_tree_classifier.fit(training_inputs, training_classes)
decision_tree_classifier.score(testing_inputs, testing_classes)

输出:

0.9736842105263158

导入sklearn中的cross_val_score,构建决策树模型,进行10次交叉验证,并输出评分。

from sklearn.model_selection import cross_val_score
decision_tree_classifier = DecisionTreeClassifier()
cv_scores = cross_val_score(decision_tree_classifier, all_inputs, all_classes, cv=10)
print (cv_scores)

输出:

[1.         0.93333333 1.         0.93333333 0.93333333 0.86666667
 0.93333333 1.         1.         1.        ]

构建决策树模型,设置max_depth=1,进行10次交叉验证,并输出评分。

decision_tree_classifier = DecisionTreeClassifier(max_depth=1)
cv_scores = cross_val_score(decision_tree_classifier, all_inputs, all_classes, cv=10)
print (cv_scores)

输出:

[0.66666667 0.66666667 0.66666667 0.66666667 0.66666667 0.66666667
 0.66666667 0.66666667 0.66666667 0.66666667]

导入sklearn中的GridSearchCVStratifiedKFold,构建决策树模型,对决策树模型参数进行网格搜索,设置parameter_grid = {'max_depth': [1, 2, 3, 4, 5],'max_features': [1, 2, 3, 4]},进行10次交叉验证,输出最优模型评分和最佳参数。

from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold
decision_tree_classifier = DecisionTreeClassifier()
parameter_grid = {'max_depth': [1, 2, 3, 4, 5],
                 'max_features': [1, 2, 3, 4]}
cross_validation = StratifiedKFold(n_splits=10)
grid_search = GridSearchCV(decision_tree_classifier, param_grid=parameter_grid, cv=cross_validation)
grid_search.fit(all_inputs, all_classes)

print('Best score: {}'.format(grid_search.best_score_))
print('Best parameters: {}'.format(grid_search.best_params_))

输出:

Best score: 0.96
Best parameters: {'max_depth': 3, 'max_features': 4}

机器学习技术(三)——机器学习实践案例总体流程_第2张图片

2、各类回归波士顿房价预测

由于本案例使用的数据集样本量较小,且数据来自于scikit-learn自带的开源波士顿房价数据。波士顿房价预测项目是一个简单的回归模型,通过此案例可以学会一些关于机器学习库sklearn的基本用法和一些基本的数据处理方法。

1.案例数据

该案例主要内容是进行波士顿数据集,共有13个特征,总共506条数据,每条数据包含房屋以及房屋周围的详细信息。其中包含城镇犯罪率,一氧化氮浓度,住宅平均房间数,到中心区域的加权距离以及自住房平均房价等等。具体如下:

CRIM:城镇人均犯罪率。
ZN:住宅用地超过 25000 sq.ft.的比例。
INDUS:城镇非零售商用土地的比例。
CHAS:查理斯河空变量(如果边界是河流,则为1;否则为0)。
NOX:一氧化氮浓度。
RM:住宅平均房间数。
AGE:1940 年之前建成的自用房屋比例。
DIS:到波士顿五个中心区域的加权距离。
RAD:辐射性公路的接近指数。
TAX:每 10000 美元的全值财产税率。
PTRATIO:城镇师生比例。
B:1000(Bk-0.63)^ 2,其中 Bk 指代城镇中黑人的比例。
LSTAT:人口中地位低下者的比例。
target:自住房的平均房价,以千美元计。

2.导入所需的包和数据集

保证下方引入的内容已经被安装。

pip install xgboost

# 防止不必要的警告
import warnings
warnings.filterwarnings("ignore")

# 引入数据科学基础包
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as st
import seaborn as sns

# 引入机器学习,预处理,模型选择,评估指标
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import r2_score

# 引入本次所使用的波士顿数据集
from sklearn.datasets import load_boston

# 引入算法
from sklearn.linear_model import RidgeCV, LassoCV, LinearRegression, ElasticNet
#对比SVC,是svm的回归形式
from sklearn.svm import SVR
# 集成算法
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from xgboost import XGBRegressor

3.载入数据集,查看数据属性,可视化

  1. 载入波士顿房价数据集,获取特征和标签,查看相关属性
# 载入波士顿房价数据集
boston = load_boston()

# x是特征,y是标签
x = boston.data
y = boston.target

# 查看相关属性
print('特征的列名')
print(boston.feature_names)
print("样本数据量:%d, 特征个数:%d" % x.shape)
print("target样本数据量:%d" % y.shape[0])

输出:

特征的列名
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
 'B' 'LSTAT']
样本数据量:506, 特征个数:13
target样本数据量:506
  1. 数据转化为dataframe形式
x = pd.DataFrame(boston.data, columns=boston.feature_names)
x.head()

输出:

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33
  1. 对标签的分布进行可视化
sns.distplot(tuple(y), kde=False, fit=st.norm)

机器学习技术(三)——机器学习实践案例总体流程_第3张图片

3、分割数据集,并对数据集进行预处理

将数据分割为训练集和测试,将数据集进行标准化处理

# 数据分割
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=28)

# 标准化数据集
ss = StandardScaler()
x_train = ss.fit_transform(x_train)
x_test = ss.transform(x_test)
x_train[0:100]

输出:

array([[-0.35703125, -0.49503678, -0.15692398, ..., -0.01188637,
         0.42050162, -0.29153411],
       [-0.39135992, -0.49503678, -0.02431196, ...,  0.35398749,
         0.37314392, -0.97290358],
       [ 0.5001037 , -0.49503678,  1.03804143, ...,  0.81132983,
         0.4391143 ,  1.18523567],
       ...,
       [-0.34697089, -0.49503678, -0.15692398, ..., -0.01188637,
         0.4391143 , -1.11086682],
       [-0.39762221,  2.80452783, -0.87827504, ...,  0.35398749,
         0.4391143 , -1.28120919],
       [-0.38331362,  0.41234349, -0.74566303, ...,  0.30825326,
         0.19472652, -0.40978832]])

4、利用各类回归模型,对数据集进行建模

  1. 输入模型名字
# 模型的名字
names = ['LinerRegression',
       'Ridge',
       'Lasso',
       'Random Forrest',
       'GBDT',
       'Support Vector Regression',
       'ElasticNet',
       'XgBoost']
  1. 创建模型列表
# 定义模型
# cv在这里是交叉验证的思想
models = [LinearRegression(),
         RidgeCV(alphas=(0.001,0.1,1),cv=3),
         LassoCV(alphas=(0.001,0.1,1),cv=5),
         RandomForestRegressor(n_estimators=10),
         GradientBoostingRegressor(n_estimators=30),
         SVR(),
         ElasticNet(alpha=0.001,max_iter=10000),
         XGBRegressor()]
  1. 输出所有回归模型的R2评分
# 先定义R2评分的函数
def R2(model,x_train, x_test, y_train, y_test):
    model_fitted = model.fit(x_train,y_train)
    y_pred = model_fitted.predict(x_test)
    score = r2_score(y_test, y_pred)
    return score
  1. 遍历所有模型进行评分
# 遍历所有模型进行评分
for name,model in zip(names,models):
    score = R2(model,x_train, x_test, y_train, y_test)
    print("{}: {:.6f}, {:.4f}".format(name,score.mean(),score.std()))

输出:

LinerRegression: 0.564115, 0.0000
Ridge: 0.563673, 0.0000
Lasso: 0.564049, 0.0000
Random Forrest: 0.735384, 0.0000
GBDT: 0.730172, 0.0000
Support Vector Regression: 0.517260, 0.0000
ElasticNet: 0.563992, 0.0000
XgBoost: 0.759977, 0.0000

5、利用网格搜索对超参数进行调节

  1. 使用网格搜索,以及交叉验证
# 模型构建
'''
  'kernel': 核函数
  'C': SVR的正则化因子,
  'gamma': 'rbf', 'poly' and 'sigmoid'核函数的系数,影响模型性能
'''

parameters = {
   'kernel': ['linear', 'rbf'],
   'C': [0.1, 0.5,0.9,1,5],
   'gamma': [0.001,0.01,0.1,1]
}

# 使用网格搜索,以及交叉验证
model = GridSearchCV(SVR(), param_grid=parameters, cv=3)
model.fit(x_train, y_train)

输出:

GridSearchCV(cv=3, estimator=SVR(),
             param_grid={'C': [0.1, 0.5, 0.9, 1, 5],
                         'gamma': [0.001, 0.01, 0.1, 1],
                         'kernel': ['linear', 'rbf']})
  1. 获取最优参数
# 获取最优参数
print ("最优参数列表:", model.best_params_)
print ("最优模型:", model.best_estimator_)
print ("最优R2值:", model.best_score_)

输出:

最优参数列表: {'C': 5, 'gamma': 0.1, 'kernel': 'rbf'}
最优模型: SVR(C=5, gamma=0.1)
最优R2值: 0.7965173649188232
  1. 可视化
ln_x_test = range(len(x_test))
y_predict = model.predict(x_test)

# 设置画布
plt.figure(figsize=(16,8), facecolor='w')
# 用红实线画图
plt.plot(ln_x_test, y_test, 'r-', lw=2, label=u'真实值')
# 用绿实线画图
plt.plot(ln_x_test, y_predict, 'g-', lw = 3, label=u'SVR算法估计值,$R^2$=%.3f' % (model.best_score_))

# 图形显示
plt.legend(loc = 'upper left')
plt.grid(True)
plt.title(u"波士顿房屋价格预测(SVM)")
plt.xlim(0, 101)
plt.show()

结果

机器学习技术(三)——机器学习实践案例总体流程_第4张图片

如汉字不能正常显示,请设置为英文或将字体文件放到指定路径中,在使用时调用字体文件。

如不能解决请参考:https://blog.csdn.net/hfy1237/article/details/128218567

你可能感兴趣的:(机器学习技术,机器学习,人工智能)