- 如何使用 LangChain 组合提示符模板
GEAWfaacc
langchainpython
在现代AI应用中,构建灵活且易于重用的提示符(Prompt)是开发者的核心需求之一。LangChain提供了一种直观的方法来组合不同部分的提示,从而实现提示符模板的高效组合和再利用。本篇文章将通过几个具体的例子,带您了解如何在LangChain中进行提示符的组合。技术背景介绍LangChain是一个用于处理语言模型提示符的框架,它支持将字符串提示符和聊天提示符进行组合,从而提高开发效率和代码复用性
- 大模型:LangChain技术讲解
玉成226
【大模型】langchain
一、什么是LangChain1、介绍LangChain是一个用于开发由大型语言模型提供支持的Python框架。它提供了一系列工具和组件,帮助我们将语言模型集成到自己的应用程序中。有了它之后,我们可以更轻松地实现对话系统、文本生成、文本分类、问答系统等功能。2、LangChain官网文档官网:https://python.langchain.com/docs/introduction/3、LangC
- 探索ChatLiteLLM与Langchain的集成应用
safHTEAHE
langchainpython
在现代AI应用开发中,简化调用多种语言模型的过程显得尤为重要。ChatLiteLLM库应运而生,它为开发者提供了调用如Anthropic、Azure、Huggingface、Replicate等模型的简便方法。这篇文章将带你深入了解如何使用Langchain与LiteLLMI/O库协同工作,实现高效的语言模型交互。1.技术背景介绍随着人工智能技术的飞速发展,多种语言模型应用于不同场景。集成这些模型
- 使用Airbyte实现数据集成的详细指南
dagGAIYD
python
Airbyte是一个功能强大的数据集成平台,专门用于从API、数据库和文件构建到仓库和数据湖的ELT(Extract,Load,Transform)管道。凭借庞大的ELT连接器目录,Airbyte为数据仓库和数据库提供了广泛的支持。本文将详细介绍如何安装和使用Airbyte,特别是在Python环境中利用langchain-airbyte库进行数据集成。技术背景介绍在现代数据驱动的应用中,数据集成
- 探索LangChain中OpenAI模型的token级log probabilities
jkgSFS
langchaineasyui前端python
在AI模型的开发和调试中,了解每个生成token的概率是非常有用的。这些信息可以帮我们理解模型的决策过程,识别可能的错误。本篇文章将介绍如何通过LangChain与OpenAI整合来获取这些token级的logprobabilities。技术背景介绍什么是LogProbabilities?在自然语言处理中,logprobabilities是一种对token生成概率的度量。通常,这个值越高,表示生成
- 如何使用 LangChain 实现模型功能调用
dagGAIYD
langchainpython
在本文中,我们将探索如何使用LangChain框架实现语言模型(LLM)的功能调用。这是构建智能对话系统、工具调用代理等应用的核心能力。通过本文,你将能够理解模型功能调用的原理,并学习如何在代码中实现这一功能。技术背景介绍功能调用是近年来语言模型(特别是ChatGPT等对话模型)的一个重要特性。它允许开发者定义特定的工具或功能,并让模型根据上下文自动决定是否调用这些功能,以及如何调用。LangCh
- 使用ModelScope实现高效句嵌入生成
dagGAIYD
python
技术背景介绍在自然语言处理(NLP)任务中,向量化文本(嵌入)是许多下游任务(如语义搜索、文本分类、问答系统等)的核心步骤之一。通过将文本转换为密集向量表示,我们可以在高维向量空间中构建更加高效的表示和检索算法。ModelScope是阿里云开源的一个模型和数据集管理平台,提供了大量预训练模型,涵盖了各种领域和任务。ModelScopeEmbeddings是一个与LangChain社区集成的工具类,
- 使用LangChain实现与维基百科集成的知识检索
dagGAIYD
langchain人工智能python
在构建知识驱动的AI应用时,实时获取可靠的信息是关键。维基百科是目前最大的在线百科全书,通过开放的编辑和高质量的内容,成为知识获取的主要来源之一。今天,我们将学习如何使用LangChain的WikipediaLoader和WikipediaRetriever模块,快速集成维基百科内容到AI应用中。在这篇文章中,我们会逐步解析以下内容:为什么选择维基百科作为知识源?LangChain核心模块解析实现
- 深度学习-92-大语言模型LLM之基于langchain的模型IO的模型调用
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Model的输入输出2langchain支持的模型3调用Ollama模型3.1设置环境变量3.2大语言模型LLM(OllamaLLM)3.2.1生成文本补全3.2.2流式生成文本补全3.3聊天模型(ChatOllama)3.3.1内置的消息类型3.3.2HumanMessage和SystemMessage3.3.3元组方式构成消息列表3.3.4stream流式3.4文本嵌入模型(Olla
- 实战LangChain(七):集成CrewAI——实现多代理协作
matianlongg
深度学习langchain
实战LangChain(七):集成CrewAI——实现多代理协作实战LangChain(一):构建您的第一个聊天机器人_langchai机器人实战LangChain(二):探索RAG——为聊天机器人注入知识-CSDN博客实战LangChain(三):深化交互——利用Neo4j提升聊天机器人的对话能力实战LangChain(四):LangGraph入门——状态管理与基础结构实战LangChain(五
- 如何使用示例选择器来优化提示生成
sagvWSRJHMNEB
c#开发语言python
在构建AI驱动的应用程序时,我们通常会使用示例选择器来选择哪些示例应包含在提示中。这是特别重要的,当我们面对大量示例时,需要一个有效的方法来进行筛选。示例选择器类正是负责这一任务的工具。技术背景介绍示例选择器的主要目标是从一组示例中,根据输入选择合适的示例。这对于生成更加精准和上下文相关的回复至关重要。LangChain提供了多种类型的示例选择器,以满足不同的应用需求。核心原理解析以下是一个示例选
- 使用 GPT-crawler 构建 RAG 应用的完整指南
sagvWSRJHMNEB
gpt爬虫人工智能python
随着生成式AI技术的迅猛发展,如何高效地利用GPT模型进行信息抽取和知识增强(RAG:Retrieval-AugmentedGeneration)成为了开发者关注的焦点。本文将深入探讨如何使用gpt-crawler工具来抓取网页内容并在LangChain项目中实现RAG应用。技术背景介绍在生成式AI应用中,RAG是一种结合信息检索和生成技术的方法。通过将外部知识融入到生成模型中,RAG能够在特定领
- 构建基于PDF文档的问答系统:使用Python和LangChain实现高效文档处理与信息检索
m0_57781768
pythonpdflangchain
构建基于PDF文档的问答系统:使用Python和LangChain实现高效文档处理与信息检索引言在现代信息化社会中,PDF文件是保存和传播重要信息的常用格式。这些文件中往往包含丰富的非结构化数据,如企业报告、研究论文和政府文件等。然而,由于其格式和内容的复杂性,直接使用传统的文本处理工具处理PDF文件存在一定困难。为了解决这一问题,本文将详细介绍如何利用Python和LangChain库,构建一个
- 使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南
m0_57781768
langchain
使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南近年来,随着大语言模型(LLMs)的迅猛发展,基于LLM的复杂问答系统(Q&AChatbot)逐渐成为人工智能领域的热门应用之一。这类应用程序可以基于特定的文本信息源回答用户提出的问题,在实际应用中非常有价值。而实现这些强大功能的核心技术之一,便是检索增强生成(RetrievalAugmentedGeneration,RAG
- 全面掌握 LangChain:从核心链条构建到动态任务分配的实战指南
大模型铲屎官
现代大模型技术与应用langchainpython大模型LLM
系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战文章目录系列文章目录前言一、LangChain的核心链简介1.1单任务的Prompt模型结合
- 玩转 LangChain:从文档加载到高效问答系统构建的全程实战
大模型铲屎官
现代大模型技术与应用langchainpython人工智能nlpAI文档加载问答系统构建
系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战文章目录系列文章目录前言一、LangChain环境搭建与初始配置1.1安装依赖1.2环境变量
- 【大模型】百度千帆大模型对接LangChain使用详解
小码农叔叔
AI大模型实战与应用LangChain使用详解LangChain对接千帆LangChain组件使用详解LangChain使用LangChain组件使用LangChain组件LangChain
目录一、前言二、LangChain架构与核心组件2.1LangChain核心架构2.2LangChain核心组件三、环境准备3.1前置准备3.1.1创建应用并获取apikey3.1.2开通付费功能3.2获取LangChain文档3.3安装LangChain依赖包四、百度千帆大模型对接LangChain4.1LLMS大语言模型能力使用4.1.1代码操作演示4.2Chatmodels能力使用4.2.1
- 如何创建自定义聊天模型类
srudfktuffk
人工智能python
在当今的AI开发中,聊天模型成为了一个非常重要的领域。本文将介绍如何使用LangChain的抽象来创建一个自定义的聊天模型,旨在帮助你轻松地将自己的语言模型集成到现有的LangChain程序中。通过包装自定义的LLM(大语言模型)到标准的BaseChatModel接口中,你不仅能与现有程序无缝集成,而且还能自动享受LangChain的各种优化,包括批处理、异步支持和流式API等。技术背景介绍聊天模
- 如何使用LangChain的`filter_messages`过滤消息
dagGAIYD
langchainjava数据库python
在复杂的对话链和代理中,我们常常需要维护一个消息列表。这个列表可能会积累来自多个不同模型、讲述者、子链等的消息。为了确保每次模型调用时只处理所需的消息,我们可以使用filter_messages实用工具来按类型、ID或名称过滤消息。技术背景介绍在对话系统或智能代理的开发中,管理消息状态是一项重要任务。随着对话深度的增加,消息列表可能会变得庞杂。因此,仅传递消息列表的子集至每个模型调用成为必要。此时
- 如何使用LangChain内置工具和工具包
jkgSFS
langchainmicrosoftpython
在当今快速发展的人工智能应用开发中,利用现有的工具和工具包能大幅加快开发进程,提高应用的效率和功能性。本文将带您深入了解LangChain中的内置工具和工具包的使用方法,并通过示例代码进行演示。技术背景介绍LangChain是一个旨在简化应用程序创建的框架,其拥有丰富的第三方工具集成。这些工具可以帮助开发者轻松访问和操作如Wikipedia等大型数据集。核心原理解析LangChain工具通过API
- 使用LangChain构建信息提取链
azzxcvhj
langchainpython深度学习
在现代文本处理应用中,从非结构化文本中提取结构化信息是一个重要且常见的任务。本教程将向您展示如何使用LangChain构建一个信息提取链。技术背景介绍随着大型语言模型(LLMs)的出现,它们的生成能力被广泛应用于各种信息提取任务。通过定义结构化的提取需求,我们可以利用这些模型从复杂的文本中获取所需的信息。核心原理解析提取链的核心在于定义清晰的提取需求,即通过Schema(数据模型)来告诉模型我们需
- 如何为LangChain开源项目做出贡献?
FADxafs
langchaineasyui前端python
技术背景介绍LangChain是一个快速发展的开源项目,旨在为开发者提供强大的语言模型链式调用功能。随着AI技术的不断革新,LangChain也在不断迭代和扩展功能。为了保持项目的活力和发展,我们欢迎不同背景的开发者进行贡献,无论是在代码、文档还是集成工具方面。核心贡献领域在LangChain项目中,您可以通过以下几种方式进行贡献:文档改进:提高项目的文档质量,包括示例代码、API说明等。代码贡献
- 多查询分析中的并发处理实践
FADxafs
python
在进行查询分析时,某些技术可能会生成多个查询。在这种情况下,我们需要记得执行所有查询并合并结果。本文将通过一个简单的示例(使用模拟数据)展示如何实现这一点。技术背景介绍在数据分析和信息检索领域,查询分析技术能够帮助我们生成和优化查询以提高搜索效率。然而,当同时生成多个查询时,处理这些查询并有效地合并结果就显得尤为重要。本次我们将使用langchain库来演示如何处理多查询情况。核心原理解析通过生成
- 使用 RunnableParallel 并行执行步骤的实践指南
GEAWfaacc
服务器linux运维python
在现代软件开发中,优化计算效率是非常关键的任务。尤其在涉及大规模数据处理或复杂计算时,并行执行成为提高性能的重要手段。LangChain提供了RunnableParallel工具,能够方便地将多个计算过程并行化执行。本文将通过实例代码,深入解析如何利用RunnableParallel实现计算过程的并行化。技术背景介绍RunnableParallel是一个强大的工具,可以将多个可运行的任务(即Run
- 使用 LangChain 构建多PDF文档聊天应用
jkgSFS
langchainpdfeasyuipython
随着大型语言模型(LLMs)的普及,如何将它们应用于文档处理成为了热门话题之一。本文将通过一个教程,展示如何使用LangChain构建一个能够处理多个PDF文档并与之对话的应用。技术背景介绍LangChain是一个广受欢迎的库,能够帮助开发者轻松地与LLMs和不同的嵌入技术进行整合。它提供了方便的接口和工具,使得复杂的自然语言处理任务变得简单高效。核心原理解析我们将利用LangChain来读取多个
- 构建一个查询分析系统
AWsggdrg
数据库python
技术背景介绍在构建一个查询分析系统时,需要能够加载文档、使用聊天模型、生成嵌入、创建向量存储并执行检索。这些过程的目标是将用户输入的查询优化,以实现更为精准的检索结果。本文将通过一个端到端的示例展示如何使用查询分析提升检索结果的相关性。我们将着眼于如何对LangChain的YouTube视频进行检索,并通过查询分析解决原始用户问题直接传递给搜索引擎时可能出现的失败模式。核心原理解析查询分析的核心在
- 使用LangChain构建简单LLM翻译应用
fGVBSAbe
langchainjava前端python
技术背景介绍在本教程中,我们将学习如何使用LangChain构建一个简单的语言模型(LLM)应用程序,该应用程序用于将文本从英语翻译成其他语言。虽然这个应用程序比较简单,但它是学习LangChain的一个不错的开始,因为许多复杂功能都可以通过简单的提示和LLM调用构建。核心原理解析LangChain通过链式调用多个组件,使得复杂的语言处理任务变得简单易行。我们将使用LangChain的以下功能:语
- 怎么使用langchain和ollama自己简单开发搭建一个本地有记忆的大模型?
玩人工智能的辣条哥
Python人工智能langchain数字人管家Ai管家大模型记忆Flask
环境:langchainollama问题描述:怎么使用langchain和ollama开发搭建一个本地有记忆的大模型?之前有个数字人管家项目,需要新增开发数字人后台大模型的记忆功能,测试了一下市面上的开源项目,没有找到满足自己开发需求,下面就自己开发一个小模块项目LLMB,并开源出来,希望各位感兴趣有能力的朋友们,可以更新完善本项目。测试了下下面一些项目,没有满足自己开发需求---###**1.A
- 大模型-LangChain4j 学习总结
小哇666
大模型大模型langchain
通过网盘分享的文件:langchain4j-study-test大模型学习后整理.rar链接:https://pan.baidu.com/s/1HpHzVaGotD6cfeaszEwEQg?pwd=73sy提取码:73sy
- 精确掌控文本分割——利用CharacterTextSplitter轻松拆解长文档
afTFODguAKBF
python
在处理大型文本文件时,尤其是在自然语言处理和文本分析领域,有时候需要将文档分割成较小的段落以便于处理和分析。今天,我们来探讨如何使用langchain-text-splitters库中的CharacterTextSplitter来实现这一目标。引言在本文中,我将介绍如何使用CharacterTextSplitter分割大型文本文档。这种技术对于文本预处理非常重要,能够帮助我们更好地管理和分析文本数
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">