tebsorflow2.0 tf.keras猫狗识别(2)—自定义训练

在上一篇文章中,我们介绍了利用tensorflow封装好的神经网络来训练猫狗数据集。但是在科研中有时我们需要对网络进行修改,这是我们就需要自定义网络训练
第一部分我们已经介绍了图片的读取,这里就不在一一赘述tebsorflow2.0 tf.keras猫狗识别,我们直接从图片的预处理。

1. 图片预处理

在这一部分我们采用from_tensor_slices的方法对图片数据集进行构建,对比tf1.x版本采用队列形式读取数据,这一种方法比较简单切易于理解。

#构建一个tf.data.Dataset
#一个图片数据集构建 tf.data.Dataset 最简单的方法就是使用 from_tensor_slices 方法。
#将字符串数组切片,得到一个字符串数据集:
train_path_ds =  tf.data.Dataset.from_tensor_slices(train_all_image_path)
print(train_path_ds)
test_path_ds 

你可能感兴趣的:(tesorflow,keras,深度学习,tensorflow)