我是傻逼
妙妙建图
把每个(x,y)位置上的纵轴看成一条链
如果没有 D D D的限制,直接求出每一纵轴上的最小值之和就行
相当于有一个源点向所有纵轴连容量 inf \inf inf的边,
所有纵轴各自连一条长为 R R R的链到汇点,
求最大流\最小割
考虑把 D D D的限制加进网络流
如果一个相邻的纵轴选了高度 i i i
那么当前纵轴低于 i − D i-D i−D和高于 i + D i+D i+D的位置都不能选
直接从相邻纵轴的位置 i i i向当前纵轴的位置 i − D i-D i−D连边即可
高于 i + D i+D i+D的情况也被从当前纵轴连向相邻纵轴的边包括在内了
之前把 t j > Q tj>Q tj>Q打成 t j > P tj>P tj>P过了19个点 debug半天
这能过19个点 合理吗?
#include
using namespace std;
const int maxn = 1e6+7, inf = 0x3f3f3f3f;
struct edge {
int v, c, nxt;
}e[maxn*5];
int head[maxn], eid, P, Q, R, D, S, T, d[maxn], tot, cur[maxn];
int id[48][48][48], val[48][48][48], nx[4] = {-1, 0, 1, 0}, ny[4] = {0, -1, 0, 1};
void init() {
memset(head, -1, sizeof(head));
eid = 0;
}
void insert(int u, int v, int c) {
e[eid].v = v; e[eid].nxt = head[u]; e[eid].c = c; head[u] = eid++;
}
bool bfs() {
memset(d, -1, sizeof(d));
queue<int> q;
q.push(S); d[S] = 0;
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].v;
if (d[v] == -1 && e[i].c) {
d[v] = d[u]+1;
q.push(v);
}
}
}
return d[T] != -1;
}
int dfs(int u, int flow) {
int tmp, res = 0;
if (u == T) return flow;
for (int &i = cur[u]; ~i; i = e[i].nxt) {
int v = e[i].v;
if (d[v] == d[u] + 1 && e[i].c) {
tmp = dfs(v, min(flow, e[i].c));
res += tmp; flow -= tmp; e[i].c -= tmp; e[i^1].c += tmp;
if (flow == 0) break;
}
}
if (flow == 0) d[u] = -1;
return res;
}
int dinic() {
int res = 0;
while (bfs()) {
memcpy(cur, head, sizeof(cur));
res += dfs(S, inf);
}
return res;
}
int main() {
scanf("%d%d%d%d", &P, &Q, &R, &D);
for (int k = 1; k <= R; k++) {
for (int i = 1; i <= P; i++) {
for (int j = 1; j <= Q; j++) {
id[i][j][k] = ++tot;
scanf("%d", &val[i][j][k]);
}
}
}
init();
S = ++tot; T = ++tot;
for (int i = 1; i <= P; i++)
for (int j = 1; j <= Q; j++) {
id[i][j][0] = S, id[i][j][R+1] = ++tot;
insert(id[i][j][R+1], T, inf);
insert(T, id[i][j][R+1], 0);
}
for (int k = 1; k <= R + 1; k++) {
for (int i = 1; i <= P; i++) {
for (int j = 1; j <= Q; j++) {
if (k > 1) {
insert(id[i][j][k-1], id[i][j][k], val[i][j][k-1]);
insert(id[i][j][k], id[i][j][k-1], 0);
} else {
insert(S, id[i][j][k], inf);
insert(id[i][j][k], S, 0);
}
if (k > D)
for (int t = 0; t < 4; t++) {
int ti = i + nx[t], tj = j + ny[t];
if (ti < 1 || ti > P || tj < 1 || tj > Q) continue;
insert(id[i][j][k], id[ti][tj][k-D], inf);
insert(id[ti][tj][k-D], id[i][j][k], 0);
}
}
}
}
printf("%d\n", dinic());
}