Windows 10 + WSL 2 + Ubuntu 22.04 搭建 AI 环境

  1. 参考 Enable NVIDIA CUDA on WSL

  2. 在WSL里的Ubuntu 22.04中进行以下操作前,请先在 Windows 10 中安装好 Nvidia驱动程序 和 CUDA Toolkit 11.7 ,并将 cuDNN 下载后的文件复制到对应目录中

  3. 安装 Conda 23.5.2

    wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh
    sudo chmod +x ./Anaconda3-2023.07-1-Linux-x86_64.sh
    sudo ./Anaconda3-2023.07-1-Linux-x86_64.sh
    # yes
    # yes
    tee -a ~/.condarc << EOF
    channels:
      - defaults
    show_channel_urls: true
    default_channels:
      - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
      - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
      - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
    custom_channels:
      conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/
    EOF
    conda clean -i
    
    # Python 3.10.12
    conda create -n ai python=3.10
    conda activate ai
    python3 -c "import platform; print(platform.architecture()[0]); print(platform.machine())"
    

    Windows 10 + WSL 2 + Ubuntu 22.04 搭建 AI 环境_第1张图片

  4. 安装 CUDA 11.7

    wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run
    sudo chmod +x ./cuda_11.7.0_515.43.04_linux.run
    sudo ./cuda_11.7.0_515.43.04_linux.run
    # accept
    
    cd /usr/lib/wsl
    sudo mkdir lib2
    cd lib2
    sudo ln -s ../lib/* .
    
    cd /usr/local/cuda-11.7/targets/x86_64-linux
    sudo mkdir lib2
    cd lib2
    sudo ln -s ../lib/* .
    sudo tee /etc/ld.so.conf.d/cuda-11-7.conf << EOF
    /usr/local/cuda-11.7/targets/x86_64-linux/lib2
    EOF
    
    sudo tee /etc/wsl.conf << EOF
    [boot]
    systemd=true
    command="date '+%Y-%m-%d %H:%M:%S' >> /data/date.log"
    
    [automount]
    ldconfig = false
    EOF
    
    cd /usr/local/cuda-11.7
    sudo ln -s targets/x86_64-linux/lib2 lib64
    sudo tee /etc/ld.so.conf << EOF
    include /etc/ld.so.conf.d/*.conf
    /usr/local/cuda-11.7/lib64
    EOF
    
    tee -a ~/.bashrc << EOF
    export PATH=/usr/local/cuda-11.7/bin:\$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:\$LD_LIBRARY_PATH
    EOF
    export PATH=/usr/local/cuda-11.7/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH
    
    sudo ldconfig
    nvcc -V
    nvidia-smi
    

    Windows 10 + WSL 2 + Ubuntu 22.04 搭建 AI 环境_第2张图片

  5. 复制 cuDNN 8.9.2 文件

    # 访问 https://developer.nvidia.com/rdp/cudnn-archive 登录后下载 cudnn-linux-x86_64-8.9.2.26_cuda11-archive.tar.xz
    tar xvJf cudnn-linux-x86_64-8.9.2.26_cuda11-archive.tar.xz
    cd cudnn-linux-x86_64-8.9.2.26_cuda11-archive
    sudo cp include/cudnn.h /usr/local/cuda/include/
    sudo cp lib/libcudnn* /usr/local/cuda/lib64/
    sudo chmod a+r /usr/local/cuda/include/cudnn.h
    sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
    
  6. 安装 PyTorch 2.0.1

    conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
    python -c "import torch; print(torch.cuda.is_available())"
    
  7. 安装 PaddlePaddle 2.4

    conda install paddlepaddle-gpu==2.4.2 cudatoolkit=11.7 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge
    python -c "import paddle; print(paddle.__file__)"
    python -c "import paddle; paddle.utils.run_check();"
    

    Windows 10 + WSL 2 + Ubuntu 22.04 搭建 AI 环境_第3张图片

  8. 安装 jupyter notebook

    conda install -n ai ipykernel --update-deps --force-reinstall
    

迎访问我的博客 原文 Windows 10 + WSL 2 + Ubuntu 22.04 搭建 AI 环境

你可能感兴趣的:(windows,ubuntu,人工智能)