- MATLAB 代码的主要功能是基于功能连接(FC)数据,利用支持向量机(SVM)进行分类,并通过留一法交叉验证、特征选择、超参数寻优、一致性特征分析以及置换检验等步骤,评估分类性能和特征的显著性
max500600
MATLAB开发语言算法matlab支持向量机分类
clear;clcNumROI=37;%ROI数目NumCon=605;%连接数目%选择病人组数据文件夹%path1=spm_select(1,'dir','pleaseselectpatientsdir');path1='D:\siying\42ML_day3\nnnnnn\FC\Patient';%和第7行用一个即可,为手动改路径file1=dir([path1,filesep,'*.txt'
- MATLAB代码实现了一个结构静力倒塌分析的功能
max500600
MATLABmatlab算法开发语言
functionstatic_collapse_analysis()clear;clc;closeall;params=initialize_parameters();delta=0;delta_increment=0.5;min_increment=0.1;n=1980;tolerance=1e-6;max_iterations=50;results=[];W_in_prev=0;p_prev=
- 基于FPGA的DDS设计
Squirrels43
verilogfpga
文章目录目标一、DDS电路核心RTL1.设计一个DDS的核心RTL代码。2.使用Matlab生成DDS的波表ROM3.验证目标二、DDS开发板测试平台1.使用Quartus的SignalTAP观察DDS的输出波形2.导出SignalTAP的捕获数据至电脑(生成List文件)3.用UltraEdit的列操作模式编辑数据格式。(matlab变量定义)4.使用Matlab分析DDS生成的正弦信号的频谱纯
- c++ 与 Matlab 程序的数据比对
一路冰雨
c++matlab开发语言
文章目录背景环境数据保存数据加载背景***避免数据精度误差,快速对比变量***环境c++下载https://github.com/BlueBrain/HighFive以及hdf5库在vs中配置库数据保存#includeusingnamespaceHighFive;std::stringfilename1="test.h5";Filefile1(filename1,File::Truncate);/
- 基于卡尔曼滤波的系统参数辨识matlab仿真
软件算法开发
MATLAB程序开发#参数辨识matlab网络
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理4.1、卡尔曼滤波的基本原理4.2、基于卡尔曼滤波的系统参数辨识5.完整程序1.程序功能描述通过kalman滤波的方法,对系统的参数进行辨识,整个程序仿真输出参数辨识的收敛过程,参数辨识误差,参数辨识之后系统的输出和真实的系统输出误差,最后设置不同的信噪比,对比不同干扰下的系统参数辨识误差。2.测试软件版本以及运行结果展
- 基于lstm算法在MATLAB对短期风速进行预测
�时过境迁,物是人非
lstm算法matlab
基于lstm算法在MATLAB对短期风速进行预测文件列表LSTM-regression-master/ELM.m , 965LSTM-regression-master/LSTM.m , 6302LSTM-regression-master/LSTM2.m , 7275LSTM-regression-master/LSTM_updata_weight.m , 4520LSTM-regression
- AI需要的基础数学知识
大囚长
机器学习大模型人工智能
AI(人工智能)涉及多个数学领域,以下是主要的基础数学知识:1.线性代数矩阵与向量:用于表示数据和模型参数。矩阵乘法:用于神经网络的前向传播。特征值与特征向量:用于降维和主成分分析(PCA)。奇异值分解(SVD):用于数据压缩和降维。2.微积分导数与偏导数:用于优化算法(如梯度下降)。链式法则:用于反向传播算法。积分:在概率和统计中有应用。3.概率与统计概率分布:如高斯分布、伯努利分布等。贝叶斯定
- matlab构造线性相位FIR滤波器
~Young.
matlab开发语言
文章目录前言一、构造一组声音二、采用FIR滤波器做频率筛选前言用生成的一组音频文件举例一、构造一组声音模拟钢琴音乐,采用逐渐衰减振荡的正弦波FFT的频域展示:源代码:functionsound_firFs=1000;%采样频率freq=[200,230,260,290,320,350,380,410,440,470];%频率数组rythm=0.5;%持续时间,单位:秒gap_duration=0.
- 【包邮送书】你好!Python
Mindtechnist
粉丝福利python网络开发语言机器学习
欢迎关注博主Mindtechnist或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关注公粽号《机器和智能》回复关键词“python项目实战”即可获取美哆商城视频资源!博主介绍:CSDN博客专家,CSDN优质创作者,CSDN实力新星,CSDN内容
- MATLAB代码实现的是对电机控制系统中自适应优化控制器与传统滑膜控制器性能的对比仿真
go5463158465
MATLAB专栏matlab
clear;%%初始参数设置motor_power=750;%电机额定功率(W)motor_speed_ref=3000;%电机额定转速(rpm)simulation_time=0.2;%仿真时间(s)sampling_time=0.001
- 找鞍点(Java)
wzx_Eleven
java蓝桥杯算法
一个矩阵元素的“鞍点”是指该位置上的元素值在该行上最大、在该列上最小。本题要求编写程序,求一个给定的n阶方阵的鞍点。输入格式:输入第一行给出一个正整数n(1≤n≤6)。随后n行,每行给出n个整数,其间以空格分隔。输出格式:输出在一行中按照“行下标列下标”(下标从0开始)的格式输出鞍点的位置。如果鞍点不存在,则输出“NONE”。题目保证给出的矩阵至多存在一个鞍点。输入样例1:417414836161
- R数据分析:多分类问题预测模型的ROC做法及解释
公众号Codewar原创作者
R数据分析
有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评估指标。那么肯定是统一成ROC了,刚好借这个机会给大家讲讲ROC在多分类问题情形下的具体使用和做法。ROC曲线回顾ROC曲线(ReceiverOperatingCharacteristicCurve)
- 基于Hough变换与分数阶变分PDE的图像去雨算法实现(附带Matlab源码)
心之飞翼
算法matlab计算机视觉Matlab
基于Hough变换与分数阶变分PDE的图像去雨算法实现(附带Matlab源码)图像去雨是计算机视觉领域的一个重要问题,它的目标是从雨滴造成的图像中恢复出原始的清晰图像。本文将介绍一种基于Hough变换和分数阶变分PDE(PartialDifferentialEquation)的图像去雨算法,并提供相应的Matlab源代码。算法步骤如下:导入图像首先,我们需要导入包含雨滴的图像。可以使用Matlab
- python 列表推导式
别样红。
python
列表推导式每一个for按照一定的规则循环后,返回一个变量。1.基本用法list1=[x*2forxinrange(10)]print(list1)#[0,2,4,6,8,10,12,14,16,18]2.增加if增加if则只有通过if判断的数据,才会输出list1=[x*2forxinrange(10)ifx%2==0]print(list1)#[0,4,8,12,16]3.多个for会按照矩阵的
- c++瓷砖
橙子亿
c++开发语言
今天的题目叫“瓷砖”,是“DFS深度优先搜索递归”一类的。题目描述在一个w×h的矩形广场上,每一块1x1的地面都铺设了红色或黑色的瓷砖。小谢同学站在某一块黑色的瓷砖上,他可以从此处出发,移动到上、下、左、右四个相邻的且是黑色的瓷砖上。现在他想知道,通过重复上述移动所能经过的黑色瓷砖数。输入第一行为两个数h和w,2≤w,h≤50,之间有一个空格隔开。以下为一个w行h列的二维字符矩阵,每个字符为“.”
- 深度学习中交叉熵函数的导数:(极简)
洪小帅
深度学习人工智能神经网络python
文章目录前言一.交叉熵函数的导数二.Z,y为有n条数据的矩阵前言另一个博主有更详细的推导https://blog.csdn.net/chaipp0607/article/details/101946040一.交叉熵函数的导数softmax:令一条数据最后的输出为[z1,z2,z3,z4,…,z10],这里令输出层的神经元数量为10pi=ezi∑j=110ezjpi=\frac{e^{z_i}}{\
- 2025美赛数学建模B题思路+模型+代码+论文
灿灿数模
数学建模
2025美赛数学建模A题+B题+C题+D题+E题思路+模型+代码(1.24第一时间更新,更新见文末名片)论文数学建模感想纪念逝去的大学数学建模:两次校赛,两次国赛,两次美赛,一次电工杯。从大一下学期组队到现在,大三下学期,时间飞逝,我的大学建模生涯也告一段落。感谢建模路上帮助过我的学长和学姐们,滴水之恩当涌泉相报,写下这篇感想,希望可以给学弟学妹们一丝启发,也就完成我的想法了。拙劣的文笔,也不知道
- 【MWORKS】MWORKS 使用感想
tsumikistep
EE_MATLABmatlabword
文章目录前言实验感想前言进行DSP实验实验感想遇到的问题:Julia编译失败,转用.m可能是设置的问题,julia脚本运行有点慢m文件编写时不显示无分号输出m文件无法像MATLAB一样分段有些函数不支持,不太好用说实话感想界面长得像VScode+matlab,可拓展性不如VScode个人比较喜欢有树状资源管理器的m文件软件认为现阶段最好还是精进matlab或者py,如果在前两者没有学得较好的情况下
- OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用
jndingxin
OpenCVopencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用左右检查来验证视差。矩阵“cost”应该由立体对应算法计算。cv::validateDisparity函数是OpenCV库中用于对立体匹配生成的视差图(disparitymap)进行后处理的一个工具。其主要功能是对计算出的视差值进行验证,确保相邻像素间的视差值
- OpenCV相机标定与3D重建(2)鱼眼相机模型
jndingxin
OpenCV数码相机opencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述鱼眼相机是一种具有非常宽视野的相机,通常会产生强烈的径向畸变。鱼眼相机模型旨在捕捉这种畸变,以便能够准确地处理和校正图像。鱼眼相机模型通常使用多项式函数来描述径向畸变。定义:设P是世界参考系中的一个3D点,其坐标为X(存储在矩阵X中)。点P在相机参考系中的坐标向量
- python 随机数 随机种子
AI算法网奇
python宝典python开发语言后端
目录神经网络推理随机种子gpu新版:神经网络推理随机种子gpu:神经网络推理随机种子含npu:numpy.full创建相同矩阵python生成n个随机整数python随机数种子,每次获取相同的随机数随机在区间M内取不重复的N个随机数取一个范围内均匀不重复的随机数神经网络推理随机种子gpu新版:defset_random_seed(seed):"""Setrandomseeds."""random.
- OpenCV相机标定与3D重建(63)校正图像的畸变函数undistort()的使用
jndingxin
OpenCVopencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述转换图像以补偿镜头畸变。该函数通过变换图像来补偿径向和切向镜头畸变。此函数仅仅是initUndistortRectifyMap(使用单位矩阵R)和remap(使用双线性插值)的组合。有关执行的具体变换详情,请参阅前者函数。对于在源图像中没有对应像素的目的图像中的像
- 蓝桥杯算法日常|枚举[*找到最多的数]
幼稚鬼?
25/1/8寒假蓝桥杯练习日志专栏算法蓝桥杯哈希算法
**找到最多的数**重点疑问总结:1、数组输入输出c++一般会采用那种方便的方式??用的就是我想的那种,就是用的最大范围定义的。2、怎样方便给数组中每个数出现的次数计数??刚开始想的是:每个数把全部的数比较一下子最后发现最佳方法是:哈希表,这里用了一个数组,数组下标表示统计的哪个数,数组的值是该数出现的次数。题目截图解题思路:遍历矩阵,将每个数字及其出现次数存储在一个哈希表(这里使用数组模拟哈希表
- 初识C语言|数组的应用之——矩阵你会不?
小邓儿◑.◑
矩阵c语言数据结构
嗨,大家好!今天,咱们要探讨的主题是如何在C语言中处理数组矩阵,并求出其中的最大值及其下标。一、什么是数组矩阵?数组矩阵,简单来说,就是二维数组。在C语言中,二维数组可以被看作是一个表格,其中每个元素都有一个行索引和一个列索引。例如,一个4x3的二维数组可以表示如下:二、求数组矩阵中的最大值及其下标:咱们的目标是找到这个矩阵中的最大值,并输出其行索引和列索引。下面是一个完整的C语言程序示例:三、代
- 4. 马科维茨资产组合模型+Fama-French五因子优化方案(理论+Python实战)
金融OG
金融资产组合模型进化论pythonjava前端金融数据库机器学习大数据
目录0.承前1.Fama-French五因子优化的现代投资组合理论1.1WhatisFama-French五因子优化的现代投资组合理论1.2WhyisFama-French五因子优化的现代投资组合理论1.3HowtoFama-French五因子优化的现代投资组合理论2.数据要素&计算流程2.1参数集设置2.2数据获取&预处理2.3收益率计算2.4因子构建与预期收益率计算2.5协方差矩阵计算2.6投
- 2. 马科维茨资产组合模型+CAMP优化方案(理论+Python实战)
金融OG
金融资产组合模型进化论人工智能大数据金融python数据库机器学习
目录0.承前1.资本资产定价模型(CAPM)优化的现代投资组合理论1.1WhatisCAPM优化的现代投资组合理论1.2WhyisCAPM优化的现代投资组合理论1.3HowtoCAPM优化的现代投资组合理论2.数据要素&计算流程2.1参数集设置2.2数据获取&预处理2.3收益率计算2.4CAPM预期收益率计算2.5协方差矩阵计算2.6投资组合表现计算2.7夏普比率优化2.8持仓筛选3.汇总代码4.
- 【AI量金术师:简易代码领悟高深金融术语】02.马科维茨资产组合模型Python实战
金融OG
高深金融术语私厨人工智能金融python
目录1.马科维茨资产组合模型简介1.1模型的起源与发展1.2核心概念2.模型的基本假设2.1投资者行为假设2.2市场环境假设3.模型的应用与局限性3.1实际应用3.2局限性探讨4.Python代码案例:实现马科维茨资产组合模型4.1环境准备与数据获取4.2数据收集4.3计算收益率与协方差矩阵4.4随机生成投资组合4.5绘制有效前沿4.6优化求解最优投资组合5.结论与展望1.马科维茨资产组合模型简介
- MATLAB符号函数绘制各种函数图像,ezplot()函数 ezplot3()函数
Python数据分析与机器学习
可视化函数图像matlab画图matlab开发语言信息可视化
我们学习常遇见的函数种类有显函数,隐函数,参数方程三种,对于隐函数绘制图像比较麻烦,给大家介绍一种简单实用的一中画函数的方法。函数介绍二维曲线ezplot()函数ezplot()函数用于绘制显函数,隐函数,参数方程二维图像,函数格式ezplot(f)直接绘制图像ezplot(f,[min,max])指定函数x的值域范围三维曲线ezplot3()函数ezplot3()函数用于绘制显函数,隐函数,参数
- python高级加密算法AES对信息进行加密和解密
Python数据分析与机器学习
python开发语言
AES(高级加密标准)是一种广泛使用的对称加密算法,它以字节为单位处理数据,将明文分组加密成密文。AES算法的核心在于一个轮函数,该函数会对数据执行多次变换,包括字节代换、行移位、列混合和轮密钥加。这些操作确保了数据的安全性,使得原始数据经过AES加密后变得无法识别。AES加密过程AES加密过程涉及以下几个关键步骤:字节代换:这一步使用一个预定义的S盒(替换表)来替换状态矩阵中的每个字节。这是一个
- 蓝桥杯Python组最后几天冲刺———吐血总结,练题总结,很管用我学会了
晚风时亦鹿
学习笔记Python算法笔记python
一、重要知识要点1、穷举法2、枚举法3、动态规划4、回溯法5、图论6、深度优先搜索(DFS)7、广度优先搜索(BFS)8、二叉树9、递归10、分治法、矩阵法11、排列组合12、素数、质数、水仙花数13、欧几里得定理gcd14、求最大公约数、最小公倍数15、海伦公式(求三角形面积)16、博弈论17、贪心18、二分查找法19、hash表20、日期计算21、矩形快速幂22、树形DP23、最短路径24、最
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite