角点检测是计算机视觉系统中用来获取图像特征的一种方法。我们都常说,这幅图像很有特点,但是一问他到底有哪些特点,或者这幅图有哪些特征可以让你一下子就识别出该物体,你可能就说不出来了。其实说图像的特征,你可以尝试说一下这幅图有几个矩形啊几个圆形啊,有几条直线啊,当然啦,你也可以说一下有几个角点。
角点通常被定义为两条边的交点。比如,三角形有三个角,矩形有四个角,这些就是角点,也是他们叫做矩形、三角形的特征,我们看到一些几何图形具有三个角,那么我们便可以脱口而出说这是一个三角形。
上面所说的是严格意义上的角点,但是从广义来说,角点指的是拥有特定特征的图像点,这些特征点在图像中有具体的坐标,并具有某些数学特征(比如局部最大或最小的灰度)。
图像特征类型可以被分为三种:
边缘
角点(感兴趣关键点)
斑点(感兴趣区域)
角点是个很特殊的存在。如果某一点在任意方向的一个微小的变动都会引起灰度很大的变化,那么我们就可以把该点看做是角点。
Harris角点检测是一种直接基于灰度图的角点提取算法,稳定性高,尤其对L型角点(也就是直角)检测精度高。缺点也是明显的,就是运算速度慢。
OpenCV使用的相应函数是
void cornerHarris( InputArray src, OutputArray dst, int blockSize,int ksize,
double k, int borderType = BORDER_DEFAULT );
下面给出相应的检测代码。
#include
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
Mat g_srcImage, g_srcImage1, g_grayImage;
int thresh = 30; //当前阈值
int max_thresh = 175; //最大阈值
void on_CornerHarris(int, void*);//回调函数
int main(int argc, char** argv)
{
g_srcImage = imread("lol19.jpg", 1);
if (!g_srcImage.data)
{
printf("读取图片错误! \n");
return -1;
}
imshow("原始图", g_srcImage);
g_srcImage1 = g_srcImage.clone();
//存留一张灰度图
cvtColor(g_srcImage1, g_grayImage, CV_BGR2GRAY);
//创建窗口和滚动条
namedWindow("角点检测", CV_WINDOW_AUTOSIZE);
createTrackbar("阈值: ", "角点检测", &thresh, max_thresh, on_CornerHarris);
//调用一次回调函数,进行初始化
on_CornerHarris(0, 0);
waitKey(0);
return(0);
}
void on_CornerHarris(int, void*)
{
Mat dstImage;//目标图
Mat normImage;//归一化后的图
Mat scaledImage;//线性变换后的八位无符号整型的图
//置零当前需要显示的两幅图,即清除上一次调用此函数时他们的值
dstImage = Mat::zeros(g_srcImage.size(), CV_32FC1);
g_srcImage1 = g_srcImage.clone();
//进行角点检测
//第三个参数表示邻域大小,第四个参数表示Sobel算子孔径大小,第五个参数表示Harris参数
cornerHarris(g_grayImage, dstImage, 2, 3, 0.04, BORDER_DEFAULT);
// 归一化与转换
normalize(dstImage, normImage, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
convertScaleAbs(normImage, scaledImage);//将归一化后的图线性变换成8位无符号整型
// 将检测到的,且符合阈值条件的角点绘制出来
for (int j = 0; j < normImage.rows; j++)
{
for (int i = 0; i < normImage.cols; i++)
{
//Mat::at(j,i)获取像素值,并与阈值比较
if ((int)normImage.at(j, i) > thresh + 80)
{
circle(g_srcImage1, Point(i, j), 5, Scalar(10, 10, 255), 2, 8, 0);
circle(scaledImage, Point(i, j), 5, Scalar(0, 10, 255), 2, 8, 0);
}
}
}
imshow("角点检测", g_srcImage1);
imshow("角点检测2", scaledImage);
}
先看看原始图
开始检测,我把阈值设为30,检测到角点还挺多的。
我把阈值进一步提高,角点变少了。认真观察一下,是不是检测到的点都是一些亮度明显变化的临界点?比如由黑变白的边界点。
除了上述的Harris角点检测方法,我们还可以采用Shi-Tomasi方法进行角点检测。Shi-Tomsi算法是Harris算法的加强版,性能当然也有相应的提高。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include
#include
#include
using namespace cv;
using namespace std;
Mat src, src_gray;
int maxCorners = 23;
int maxTrackbar = 100;
RNG rng(12345); //RNG:random number generator,随机数产生器
char* source_window = "Image";
void goodFeaturesToTrack_Demo(int, void*);
int main()
{
//转化为灰度图
src = imread("lol19.jpg", 1);
cvtColor(src, src_gray, CV_BGR2GRAY);
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
//创建trackbar
createTrackbar("MaxCorners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo);
imshow(source_window, src);
goodFeaturesToTrack_Demo(0, 0);
waitKey(0);
return(0);
}
void goodFeaturesToTrack_Demo(int, void*)
{
if (maxCorners < 1) { maxCorners = 1; }
//初始化 Shi-Tomasi algorithm的一些参数
vector corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;
//给原图做一次备份
Mat copy;
copy = src.clone();
// 角点检测
goodFeaturesToTrack(src_gray,corners,maxCorners,qualityLevel,minDistance,Mat(),blockSize,useHarrisDetector,k);
//画出检测到的角点
cout << "** Number of corners detected: " << corners.size() << endl;
int r = 4;
for (int i = 0; i < corners.size(); i++)
{
circle(copy, corners[i], r, Scalar(rng.uniform(0, 255), rng.uniform(0, 255),
rng.uniform(0, 255)), -1, 8, 0);
}
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, copy);
}