Hive on Spark调优(大数据技术8)

8章 任务并行度优化

8.1 优化说明

        对于一个分布式的计算任务而言,设置一个合适的并行度十分重要。在Hive中,无论其计算引擎是什么,所有的计算任务都可分为Map阶段和Reduce阶段。所以并行度的调整,也可从上述两个方面进行调整。

8.2 Map阶段并行度

        Map端的并行度,也就是Map的个数。是由输入文件的切片数决定的。一般情况下,Map端的并行度无需手动调整。Map端的并行度相关参数如下:

--可将多个小文件切片,合并为一个切片,进而由一个map任务处理
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; 
--一个切片的最大值
set mapreduce.input.fileinputformat.split.maxsize=256000000;

8.3 Reduce阶段并行度

Reduce端的并行度,相对来说,更需要关注。默认情况下,Hive会根据Reduce端输入数据的大小,估算一个Reduce并行度。但是在某些情况下,其估计值不一定是最合适的,故需要人为调整其并行度。

Reduce并行度相关参数如下:

--指定Reduce端并行度,默认值为-1,表示用户未指定
set mapreduce.job.reduces;
--Reduce端并行度最大值
set hive.exec.reducers.max;
--单个Reduce Task计算的数据量,用于估算Reduce并行度
set hive.exec.reducers.bytes.per.reducer;

Reduce端并行度的确定逻辑为,若指定参数mapreduce.job.reduces的值为一个非负整数,则Reduce并行度为指定值。否则,Hive会自行估算Reduce并行度,估算逻辑如下:

假设Reduce端输入的数据量大小为totalInputBytes

参数hive.exec.reducers.bytes.per.reducer的值为bytesPerReducer

参数hive.exec.reducers.max的值为maxReducers

则Reduce端的并行度为:

 其中,Reduce端输入的数据量大小,是从Reduce上游的Operator的Statistics(统计信息)中获取的。为保证Hive能获得准确的统计信息,需配置如下参数:

--执行DML语句时,收集表级别的统计信息
set hive.stats.autogather=true;
--执行DML语句时,收集字段级别的统计信息
set hive.stats.column.autogather=true;
--计算Reduce并行度时,从上游Operator统计信息获得输入数据量
set hive.spark.use.op.stats=true;
--计算Reduce并行度时,使用列级别的统计信息估算输入数据量
set hive.stats.fetch.column.stats=true;

你可能感兴趣的:(Spark,On,Hive调优,大数据,hive,spark)