大数据学习03-Hive分布式集群部部署

系统环境:centos7
软件版本:jdk1.8、zookeeper3.4.8、hadoop2.8.5、hive1.1.0

一、下载安装

下载hive安装包,上传到linux服务器上,
大数据学习03-Hive分布式集群部部署_第1张图片
解压安装包

 tar -zxvf apache-hive-1.1.0-bin.tar.gz -C /home/local/

重命名文件

mv apache-hive-1.1.0-bin/ hive

二、Hive部署

配置Hive环境

vi /etc/profile

添加如下配置

#hive
export HIVE_HOME=/home/local/hive
export PATH=$PATH:${HIVE_HOME}/bin

数据库设置

mysql -uroot -p
#创建数据库
create database metastore;
#关闭只读
set global read_only=0;
#设置密码安全策略
set global validate_password_policy=0;
#设置密码长度
set global validate_password_length=4;
#更改密码
ALTER USER 'root'@'localhost' IDENTIFIED BY 'root';
#数据库授权
grant all on metastore.* to hive@'%' identified by 'hive';
GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'root';

#刷新权限
flush privileges;
#退出mysql
exit

上传mysql-connector到Hive库目录

cp mysql-connector-java-5.1.49.jar /home/local/hive/lib/

修改hive配置文件

复制hive-env.sh

cp /home/local/hive/conf/hive-env.sh.template /home/local/hive/conf/hive-env.sh

修改hive-env.sh文件,参考如下内容:

vim /home/local/hive/conf/hive-env.sh
export JAVA_HOME=/home/local/java
export HADOOP_HOME=/home/local/hadoop
export HIVE_HOME=/home/local/hive
export HIVE_CONF_DIR=/home/local/hive/conf

复制hive-site.xml

cp /home/local/hive/conf/hive-default.xml.template /home/local/hive/conf/hive-site.xml

修改hive-site.xml

property>
    hive.exec.scratchdir
    /user/hive/tmp


    hive.metastore.warehouse.dir
    /user/hive/warehouse


    hive.querylog.location
    /user/hive/log


    javax.jdo.option.ConnectionURL
jdbc:mysql://master:3306/metastore?createDatabaseIfNotExist=true&characterEncoding=UTF-8&useSSL=false
  
  
    javax.jdo.option.ConnectionDriverName
    com.mysql.jdbc.Driver
  
  
    javax.jdo.option.ConnectionUserName
    root
  
  
    javax.jdo.option.ConnectionPassword
    root
  

初始化hive元数据库

schematool -dbType mysql -initSchema root root

分发hive至每个节点服务器

for i in {1..2};do scp -r /home/local/hive/ root@slave${i}:/home/local/;done

三、Hive测试

启动Hive

启动mysql

systemctl start mysql
hive

大数据学习03-Hive分布式集群部部署_第2张图片
hive创建数据库

create database testdb;

创建表

drop table id exists testdb.score;
create table testdb.score
(name string comment "名称",
 gender string comment "性别",
 score int comment "分数")
row format delimited fields terminated by '\t'
lines terminated by '\n'
stored as textfile;

删除表

drop table if exists table;

本地文件导入hive

load data local inpath ''  into table ''

hdfs文件导入hive

在/opt/hive/data/目录下新建stu_score.txt文件,添加如下内容

jone male 30
mike male 40
sunny female 50

文件上传到hdfs上

hdfs dfs -put /opt/hive/data/stu_score.txt /hive/warehouse

hdfs上传到hive表中

load data inpath '/hive/warehouse/stu_score.txt' into table score;

exit;

Java程序将hdfs文件上传到hive
导入依赖

  
  
      org.apache.hadoop
      hadoop-client
      2.8.5
  
  
  
      org.apache.hive
      hive-jdbc
      1.1.0
  

编写测试用例

public class HiveTest {

    public static void main(String[] args) throws SQLException {
        HdfsFileUploader("input/stu_score.txt", "/hive/warehouse");
        HdfsToHiveUploader("/hive/warehouse/stu_score.txt", "score");
    }

    /**
     * 使用sql查询数据库 统计时间 测试性能
     *
     * @param sql
     * @return
     */

    public static List getDataList(String sql) {
        long start = System.currentTimeMillis();
        List list = new ArrayList();
        Connection connection = getConnection();
        try {
            Statement statement = connection.createStatement();
            ResultSet resultSet = statement.executeQuery(sql);
            ResultSetMetaData metaData = resultSet.getMetaData();
            int columnCount = metaData.getColumnCount();
            while (resultSet.next()) {
                Map map = new HashMap<>();
                for (int i = 1; i <= columnCount; i++) {
                    // 获取字段名称 metaData.getColumnName(i)
                    map.put(metaData.getColumnName(i), resultSet.getObject(i));
                }
                list.add(map);
                // Process the  result set
            }
            resultSet.close();
            statement.close();
            connection.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
        long end = System.currentTimeMillis();
        System.out.println("本次查询耗时" + (end - start) / 1000 + "秒");
        return list;
    }

    /**
     * 获取数据库连接对象
     *
     * @return
     */
    public static Connection getConnection() {
        Connection connection = null;
        try {
            // Load Hive JDBC driver
            Class.forName("org.apache.hive.jdbc.HiveDriver");
            // Establish connection to Hive
            connection = DriverManager.getConnection("jdbc:hive2://192.168.245.200:10000/testdb", "root", "root");
        } catch (Exception e) {
            e.printStackTrace();
        }
        return connection;
    }

    /**
     * 本地文件上传到hdfs
     */
    public static void HdfsFileUploader(String localFilePath, String hdfsFilePath) {
        Configuration configuration = new Configuration();
        configuration.set("fs.defaultFS", "hdfs://192.168.245.200:9000"); // 设置HDFS的URL

        try {
            FileSystem fileSystem = FileSystem.get(configuration);
            fileSystem.copyFromLocalFile(new Path(localFilePath), new Path(hdfsFilePath));
            System.out.println("File uploaded to HDFS successfully.");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    /**
     * hdfs上传到hive
     */
    public static void HdfsToHiveUploader(String hdfsFilePath, String tableName) {

        try {
            Connection connection = getConnection();
            Statement statement = connection.createStatement();

            // Create temporary external table in Hive
            String createTableQuery = "CREATE EXTERNAL TABLE IF NOT EXISTS " + tableName + " (City STRING, City_Admaster STRING,City_EN STRING,Province STRING,Province_EN STRING,Region STRING,Tier STRING) " + "ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' " + "STORED AS TEXTFILE " + "LOCATION '/hive/warehouse/china_city_list'";
            statement.execute(createTableQuery);

            // Load data from HDFS to Hive table
            String loadDataQuery = "LOAD DATA INPATH '" + hdfsFilePath + "' OVERWRITE INTO TABLE " + tableName;
            statement.execute(loadDataQuery);

            System.out.println("File uploaded from HDFS to Hive successfully.");

            // Close connection and statement
            statement.close();
            connection.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

四、总结

本次实验中,Hive采用MySQL数据库保存Hive的元数据,而不是采用Hive自带的derby来存储元数据。
Hive常用的HiveQL操作命令主要包括:数据定义、数据操作。
Hive实现最大的优势是,对于非程序员,不用学习编写Java MapReduce代码,也可以完成MapReduce任务。

你可能感兴趣的:(大数据,大数据,学习,hive)