注意事项:
涉及到"矩阵/二维前缀和"的一些知识,建议先理解那篇文章。
题目:
将一个 8×8 的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了 (n−1) 次后,连同最后剩下的矩形棋盘共有 n 块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)
原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。
现在需要把棋盘按上述规则分割成 n 块矩形棋盘,并使各矩形棋盘总分的均方差最小。
请编程对给出的棋盘及 n,求出均方差的最小值。
输入格式
第 1 行为一个整数 n。
第 2 行至第 9 行每行为 8 个小于 100 的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
输出格式
输出最小均方差值(四舍五入精确到小数点后三位)。
数据范围 思路: 还是经典的y式dp分析法 2.状态计算 1.横切, 2.竖切, 注意这里横切和竖切是并列的关系而不是嵌套,因为横切了就不能竖切,竖切了就不能横切,只能取一种,Min(top, bot, left, right) 即为当前区间最小均方差。 如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力! 声明:
1输入:
3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3
输出:
1.633
#include
思路很简单,其实就是枚举棋盘的所有分割方式,
具体为每次对棋盘进行一次横切或竖切,将棋盘分成两块矩形的子棋盘,
分割完一次后,我们可以选择两个子棋盘中的一个再继续递归操作,
直到分割次数k用完或已经不能再切割为止。
1.状态表示
f[x1][y1][x2][y2][k]
:
以(x1, y1)为左上角,(x2, y2)为右下角的区域,分割k
次的所有方案,
属性为Min(最小均方差)。
枚举所有当前选取的区间的切分可能性:y1
到y2
间的所有分界线k
(切y轴)
上区间值:top = value(x1, y1, x2, k)
下区间值:bot = value(x1, k+1, x2, y2)x1
到x2
间的所有分界线k
(切x轴)
左区间值:left = value(x1, y1, k, y2)
右区间值:right = value(k+1, y1, x2, y2)
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流