- 吴恩达机器学习全课程笔记第二篇
亿维数组
MachineLearning机器学习笔记人工智能学习
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是吴恩达机器学习笔记的第二篇,第一篇笔记请见:吴恩达机器学习全课程笔记第一篇完整的课程链接如下:吴恩达机器学习教程(bilibili)推荐网站:scikit-learn中文社区吴恩达机器学习学习资料(gith
- 吴恩达机器学习笔记(2)
python小白22
一.逻辑回归1.什么是逻辑回归?逻辑回归是一种预测变量为离散值0或1情况下的分类问题,在逻辑回归中,假设函数。2.模型描述在假设函数中,,为实数,为Sigmoid函数,也叫Logistic函数。模型解释:,即就是对一个输入,的概率估计。损失函数的理解:所谓最大似然估计,就是我们想知道哪套参数组合对应的曲线最可能拟合我们观测到的数据,也就是该套参数拟合出观测数据的概率最大,而损失函数的要求是预测结果
- 吴恩达机器学习笔记十二 Sigmoid激活函数的替代方案 激活函数的选择 为什么要使用激活函数
爱学习的小仙女!
机器学习机器学习人工智能
在需求预测案例中,awareness这个输入可能不是二元(binary)的,或许是一点(alittlebit)、有些(somewhat)或完全(extremely),此时相比将awareness规定为0、1,不如考虑概率,认为它是一个0-1之间的数。激活函数可以采用ReLU函数(rectifiedlinearunit)三个常用的激活函数使用线性激活函数也可以看作是没有激活函数。激活函数的选择输出层
- 吴恩达机器学习笔记十 神经网络 TensorFlow 人工智能
爱学习的小仙女!
机器学习神经网络人工智能深度学习
神经网络:说几层的时候是指隐藏层及输出层,不包含输入层。例如下图是一个四层神经网络。前向传播(forwardpropagation)越靠近输出层,该层的神经元数量越少TensorFlow(张量流)实现神经网络的搭建sequential()把两层顺序连接起来;如果有新的x,用predict()人工智能
- 吴恩达机器学习笔记-Logistic回归模型
Carey_Wu
回归函数在逻辑回归模型中我们不能再像之前的线性回归一样使用相同的代价函数,否则会使得输出的结果图像呈现波浪状,也就是说不再是个凸函数。代价函数的表达式之前有表示过,这里我们把1/2放到求和里面来。这里的求和部分我们可以表示为:很显然,如果我们把在之前说过的分类问题的假设函数带进去,即,得到的结果可能就是上述所说的不断起伏的状况。如果这里使用梯度下降法,不能保证能得到全局收敛的值,这个函数就是所谓的
- 吴恩达机器学习笔记(1)
python小白22
一.初识机器学习1.监督学习在监督学习中,训练数据既有特征又有标签,通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。监督学习可以分为回归问题和分类问题。回归问题是利用训练出的模型,预测连续的数值输出;分类问题是预测离散值的输出。2.无监督学习无监督学习是给算法大量的数据,要求它找出数据的类型结构。无监督学习的数据没有标签,或是所有数据都是同一种标签
- ML:2-2neural network layer
skylar0
机器学习
文章目录1.神经网络层2.更复杂的神经网络3.神经网络的前向传播【吴恩达机器学习笔记p47-49】1.神经网络层【了解神经网络如何完成预测的】input:4个数字的向量。3个神经元分别做logisticregression。下角标:标识第i个神经元的值。上角标:表示第j层layer的值。这3个神经元所做的logisticregression的结果组成了一个向量a将传给ouputlayer。第1层的
- 吴恩达机器学习笔记(1)——单变量线性回归
机智的神棍酱
上一个笔记,我们大概了解了什么是机器学习以及机器学习的两个重要的分类,本篇笔记将带领大家了解机器学习的第一个模型——线性回归例题为了让大家更加直观的理解这个模型,我们引入一个例题,我们有一组波特兰市的城市住房的价格数据,我们要通过这些数据来找出一个函数,来预测任意面积下的房价,这就是一个简单的线性回归问题。这里给出的数据是一组房子面积对应的房价数据集其中m代表训练集,x是输入,y是输出。我们用(x
- 吴恩达机器学习笔记
AADGSEGA
机器学习
吴恩达机器学习笔记第一周基本概念监督学习分为回归算法和分类算法无监督学习事先没有正确答案。例如将客户群分成不同类,混合的声音区分开先在Octave或者matlab实现,可行,再尝试用Java或者python或者C++重新写出来只考虑两个变量的线性回归:例如找出一条函数拟合房价的那个例子里面的数据点。数据集:输入x[i],输出y[i],中间函数是h。使用成本函数(即方差误差,这里假设是只有房屋大小这
- 吴恩达机器学习笔记
六本木砍王刀哥
机器学习笔记人工智能
一、机器学习1.1机器学习定义1.2监督学习supervisedlearning1.2.1监督学习定义给算法一个数据集,其中包含了正确答案,算法的目的是给出更多的正确答案如预测房价(回归问题)、肿瘤良性恶性分类(分类问题)假如说你想预测房价。前阵子,一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千
- 吴恩达机器学习笔记26-样本和直观理解1(Examples and Intuitions I)
weixin_34221773
人工智能数据结构与算法
从本质上讲,神经网络能够通过学习得出其自身的一系列特征。在普通的逻辑回归中,我们被限制为使用数据中的原始特征?1,?2,...,??,我们虽然可以使用一些二项式项来组合这些特征,但是我们仍然受到这些原始特征的限制。在神经网络中,原始特征只是输入层,在我们上面三层的神经网络例子中,第三层也就是输出层做出的预测利用的是第二层的特征,而非输入层中的原始特征,我们可以认为第二层中的特征是神经网络通过学习后
- 吴恩达机器学习笔记--第三周-4.解决过拟合问题
Loki97
吴恩达machinelearning学习笔记机器学习machinelearning吴恩达过拟合正则化
week3-4.SolvingtheProblemofOverfitting一、TheProblemofOverfittingunderfitting=highbias;overfitting=highvariance。避免过拟合的方法:二、CostFunction在代价函数J中对每个参数theta加入正则化项(罚函数),从而使所有的参数变小。但是不对theta0增加正则化项。若正则化项中的系数l
- 吴恩达机器学习笔记
孙虾米
WhatisMachineLearning?TwodefinitionsofMachineLearningareoffered.ArthurSamueldescribeditas:"thefieldofstudythatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed."Thisisanolder,informaldef
- 吴恩达机器学习笔记(五)正则化Regularization
哇哈哈哈哈呀哇哈哈哈
机器学习机器学习人工智能逻辑回归
正则化(regularization)过拟合问题(overfitting)Underfitting(欠拟合)–>highbias(高偏差)Overfitting(过拟合)–>highvariance(高方差)Overfitting:Ifwehavetoomanyfeatures,thelearnedhypothesismayfitthetrainingsetverywell,butfailtoge
- 吴恩达机器学习笔记---正则化
ML0209
机器学习机器学习
前言使用正则化技术缓解过拟合现象,使模型更具泛化性1.过拟合问题(Overfit)2.代价函数(CostFunction)3.线性回归的正则化(RegularizedLinearRegression)4.逻辑回归的正则化(RegularizedLogisticRegression)正则化(Regularization)(一)过拟合问题(Overfit) 先看两张图: 两张图分别代表回归问题和分
- 吴恩达机器学习笔记(三)
yh_y
前言我跳过了Octave部分的学习,转而利用这部分时间去研究python如何实现这系列课程的小作业,当作是熟悉一边python的一些常用库及一些好用的工具。关于这系列的python代码参考下面这个大佬的代码:吴恩达机器学习与深度学习作业目录-Cowry-CSDN博客接下来开始第三周的学习,线性回归算法结束,进入下一个算法。视频课简记6、逻辑回归6.1分类问题分类问题在第一周一开始举得例子也曾接触过
- 吴恩达机器学习笔记(二)
五大人
模型描述:根据房间的大小(平方数)预测其能售卖出的价格1、监督学习(每个例子都有一个正确的输出值)1.1、回归问题,可以预测一个准确的数值输出1.2、分类问题,可以预测离散值输出(只有0和1的离散值输出)2、训练集(trainingset):在监督学习中提供“参考”的数据集合三个要素:训练集的数量,输入变量,输出变量训练样本(trainingexample):(x^(i),y^(i))第i个训练样
- 吴恩达机器学习笔记(自用)
cosθ
机器学习人工智能python
吴恩达机器学习机器学习的定义什么是机器学习?机器学习算法1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)单变量线性回归模型描述(ModelRepresentation)代价函数梯度下降线性回归中的梯度下降凸函数(convexfunction)多变量线性回归多元梯度下降法特征缩放(FeatureScaling)学习率(Learningra
- 吴恩达机器学习笔记(3)
魏清宇
多变量线性回归:问题:根据多个属性,如房子面积,房子楼层,房子年龄等估计房子的价格多变量线性回归中的变量多变量线性回归的假设此时有多个特征,i对应不同的特征值,如房子面积,楼层,年龄等,参数为一个n+1维向量多变量线性回归中的梯度下降,对每一个参数求偏导数从而得到不同参数的梯度参数特征缩放——加速梯度下降过程收敛到最优值多变量梯度下降时,参数的取值要尽量小在多多变量梯度下降中,要让不同参数的取值范
- 吴恩达机器学习笔记(5)—— 神经网络
机智的神棍酱
又摸鱼摸了好久,终于开学了,不能再摸鱼了,这学期课都是嵌入式开发方面的,我给自己的电脑买了个新硬盘装了Linux,不再像以前在虚拟机里小打小闹了,折腾了好几天的新系统,现在有时间写新的笔记了。这次给大家带来的是神经网络,比较难,我可能写的也不是太明白,就看看吧。非线性假设其实神经网络是一个很古老的算法,不过在很长的一段时间内受计算机的机能所限,这个算法没有太大的进展。直到了现在,计算机的飞速发展,
- 吴恩达机器学习笔记(一)
yh_y
概念机器学习是研究计算机模仿人类学习的过程,利用新的数据改善自身的性能,是人工智能的核心。机器学习、人工智能、深度学习之间的关系:AI、ML、DL的包含关系人工智能=机器人;机器学习是实现人工智能的一种方法;深度学习是实现机器学习的一种技术。概念包含关系上:人工智能>机器学习>深度学习。视频课简记:1、引言1.1欢迎1、机器学习很常见,如谷歌搜索(搜出的网站排序算法)、邮箱的垃圾站(无监督)。2、
- 正则化(吴恩达机器学习笔记)
是忘生啊
机器学习机器学习逻辑回归人工智能
文章目录1.过拟合问题2.代价函数3.正则化线性回归1.梯度下降法2.正规方程4.正则化逻辑回归1.过拟合问题如图所示:第一个模型是线性的,属于欠拟合,不能很好的适应数据集,而第3个则是一个高次方的模型,过于拟合原始数据,从而不能很好的预测数据,属于欠拟合。也不难看出,当x的次数越高,训练出来的模型就会对数据集拟合的越好,但是其预测效果就会变差。解决方案:①减少特征的数量,丢弃掉一些非必要的特征。
- 机器学习正则化ppt_吴恩达机器学习笔记(三) —— Regularization正则化
希望阳光下
机器学习正则化ppt
主要内容:一.欠拟合和过拟合(over-fitting)二.解决过拟合的两种方法三.正则化线性回归四.正则化logistic回归五.正则化的原理一.欠拟合和过拟合(over-fitting)1.所谓欠拟合,就是曲线没能很好地拟合数据集,一般是由于所选的模型不适合或者说特征不够多所引起的。2.所谓过拟合,就是曲线非常好地拟合了数据集(甚至达到完全拟合地态度),这貌似是一件很好的事情,但是,曲线千方百
- 【吴恩达机器学习笔记详解】第六章 逻辑回归
爱冒险的梦啊
机器学习教程机器学习逻辑回归人工智能
第五章主要讲的是编程语言的介绍,因为我们现在用python的比较多,所以就没有再看那一章。但是5.6值得看一下5.6矢量现在的变成语言包含了各种各样的矩阵库,所以通常进行矩阵计算的时候我们直接用命令即可,如果使用了合适的向量化方法,代码会简单很多。下面进行一些例子的讲解。这是线性回归的假设函数,他是从0到j的一个求和,我们也可以把他看作是矩阵的相乘,θ的转置×x,可以写成计算两个向量的内积。前面的
- 吴恩达机器学习笔记:逻辑回归分类、神经网络
流动的时间里找你的旋律
神经网络机器学习深度学习
机器学习笔记:逻辑回归分类、神经网络逻辑回归LogisticRegression(不是很懂)正则化Regularization神经网络NeuralNetworks(也不太懂)建议评估假设算法模型选择和交叉验证集诊断偏差和方差正则化和偏差/方差学习曲线决定下一步做什么机器学习系统的设计(MachineLearningSystemDesign)类偏斜的误差度量(不太懂)机器学习的数据(不太懂)机器学习
- 逻辑回归(吴恩达机器学习笔记)
是忘生啊
机器学习逻辑回归机器学习算法
1.分类问题 在分类问题中,要预测的变量y是一个离散的值,尝试预测的结果是否属于某一个类,如:判断一封电子邮件是否是垃圾邮箱,区分一个肿瘤是恶性的还是良性的。 我们将因变量可能属于的两个类分别称为负向类和正向类,则因变量y∈0,1,其中0表示负向类,1表示正向类。2.假说表示 ,在逻辑回归中我们引入一个新的模型,该模型的输出变量范围始终在0和1之间。逻辑回归的假设是:hθ(x)=g(θTX)h_{
- 吴恩达机器学习笔记(3)——Logistic 回归
机智的神棍酱
放假这么久,天天摸鱼,已经好久没更新了,希望后面的更新速度能达到日更吧,这次给大家介绍的是Logistic回归,虽然是名字带有回归,其实是一个分类算法。废话不多说,我们先从例题来引入我们今天的算法。引论我们这次不讨论房价的问题了,这次我们来讨论肿瘤大小判断肿瘤是否是良性的肿瘤。这是一个两项分布问题,输出的结果只可能是两个一个是是另一个是否。我们可以用0,1来表示输出的结果。那么我们如何来区分良性还
- 多元线性回归boston房价(吴恩达机器学习笔记)
是忘生啊
机器学习机器学习线性回归逻辑回归
目录1.多元线性回归1.梯度下降法2.正规方程2梯度下降法实践1.特征缩放2.学习率(learningrate)3.Boston房价预测1.多元线性回归对房价模型增加更多的特征,如房间数,楼层数等,构成了一个含有多变量的模型,模型中特征为(x1,x2...xn)(x_{1},x_{2}...x_{n})(x1,x2...xn).其中n代表特征数量,m代表训练集中的实列数量。x(i)x^{(i)}x
- 吴恩达机器学习笔记(一)——线性回归
tedist
机器学习吴恩达AndrewNg机器学习线性回归
线性回归学习笔记1.线性回归概述线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。其在金融、医疗等领域有着广泛的应用。y=ax+b一元线性回归可以看作是多元线性回归的一个特例,因此只要分析多元线性回归的特性。2.算法流程(1)选取特征值,设计假设函数。(2)代价函数。(3)进行梯度下降/正规方程。当我们需要用线性回归去解释一个现象或尝试做预测的时候,
- 吴恩达机器学习笔记(一)
cometsue
吴恩达机器学习机器学习人工智能
文章目录引言1.1Welcome1.2Whatismachinelearning?1.3Supervisedlearning1.4Unsupervisedlearning引言1.1Welcome参考视频:P1Welcome总结:第一个视频主要讲述了什么是机器学习以及机器学习的一些应用,比如垃圾邮件识别、网页排序、产品推荐等等。1.2Whatismachinelearning?参考视频:P2What
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http