- Python和MATLAB及C++信噪比导图(算法模型)
亚图跨际
算法交叉知识Python视频图像修复模数转换信号链噪音频谱计算量化周期性视觉刺激高斯噪声的矩形脉冲心率失常检测算法
要点视频图像修复模数转换中混合信号链噪音测量频谱计算和量化周期性视觉刺激脑电图高斯噪声的矩形脉冲总谐波失真周期图功率谱密度各种心率失常检测算法胶体悬浮液跟踪检测计算交通监控摄像头图像噪音计算Python信噪比信噪比是科学和工程中使用的一种测量方法,用于比较所需信号水平与背景噪声水平。信噪比定义为信号功率与噪声功率之比,通常以分贝表示。高于1:1(大于0dB)的比率表示信号大于噪声。信噪比是影响处理
- STM32 如何生成随机数
千千道
STM32stm32单片机物联网
目录一、引言二、STM32随机数发生器概述三、工作原理1.噪声源2.线性反馈移位寄存器(LFSR)3.数据寄存器(RNG_DR)4.监控和检测电路:5.控制和状态寄存器6.生成流程四、使用方法1.使能随机数发生器2.读取随机数3.错误处理五、注意事项1.随机数的质量2.安全性3.性能考虑六、总结一、引言在嵌入式系统开发中,随机数的生成常常是一个重要的需求。无论是用于加密、模拟、游戏还是其他需要不确
- 语音识别技术有哪些应用场景?
不想秃头的程序
语音识别人工智能
语音识别技术,作为人工智能领域的重要分支,已经深入到我们日常生活的方方面面。以下是一些常见的应用场景:智能助理智能助理如Siri、GoogleAssistant以及Alexa等,都基于语音识别技术来实现用户交互。用户可以通过语音命令来拨打电话、查询信息、设置提醒等。这些助理软件能够理解多种语言和方言,并能够在复杂的环境噪声中准确识别用户的指令。智能家居在智能家居领域,语音识别被用于控制各种智能设备
- 【无线通信】误差矢量幅度(EVM)
守月满空山雪照窗
无线通信无线通信
误差矢量幅度(ErrorVectorMagnitude,EVM)是一种用来评估数字通信系统中调制质量的重要指标。EVM衡量的是理想信号与实际接收信号之间的差异,通常用来评估调制质量、信号完整性和接收机性能。EVM的定义在一个数字通信系统中,理想情况下接收到的信号应该精确地落在特定的理想星座点上(比如QAM或PSK星座图)。然而,由于各种现实因素,如噪声、失真、非线性效应和相位误差,接收到的信号可能
- 平滑法时间序列模型原理及Python实践
AI智博信息
数据分析与挖掘python人工智能
平滑法时间序列模型原理主要涉及通过一定的算法对时间序列数据进行平滑处理,以消除或减弱数据中的随机波动和噪声,从而揭示出数据中的长期趋势和季节性变化,进而对未来数据进行预测。以下是平滑法时间序列模型的详细原理:一、基本原理平滑法时间序列模型基于对历史数据的平滑处理,通过对数据的平均或加权平均,去除数据中的随机波动,使得时间序列数据更加平滑,便于分析和预测。这种方法能够帮助我们更好地理解数据的长期趋势
- 爱旅行,趁现在
斑马莉莉安
旅行,总是令人期待,因为它让人联想到的是远离早已十分熟悉的环境和那繁重的学习和工作,是对已知的斩断,更是对未知的拥抱,未知总是让人向往。都说人生在世,身体和灵魂至少有一个在路上。我们热爱旅行,因为在旅途中我们可以接触到更多新鲜的人,陌生的环境,体验到之前无法体验到的事,往往正是这份空间的隔离使我们远离了原有生活的“噪声”,使我们重新成为一个鲜活的人。旅途中我们所看见的一切经历的一切都是新鲜的,有趣
- Gyro陀螺仪 > MPU 6000 vs ICM 20689
ABEL in China
DIY之旅单片机嵌入式硬件
目录参考MPU6000和ICM20689对比陀螺仪的选择:采样率与噪声参考Gyro-MPU6000vsICM20689|IntoFPVForumFPVDroneFlightControllerExplained-OscarLiangMPU6000和ICM20689对比两个飞行控制器陀螺仪。分别属于T-Motor和iFlight。T-Motor使用MPU6000陀螺仪,而iFlight使用2xICM
- 数字图像处理(一系列对图像进行处理、分析和改进的技术)
编程日记✧
智能医疗计算机视觉图像处理人工智能
数字图像处理是指对图像进行一系列的数学和算法处理,以增强、分析或理解图像的内容。这些处理包括从基础的像素操作到复杂的高维变换和机器学习模型。1.图像降噪在图像获取和传输过程中,往往会引入噪声。降噪技术用于减少这些噪声,同时尽量保持图像的细节。常见方法有:均值滤波:将像素邻域内的像素值取平均值,从而平滑图像。这种方法简单但可能会模糊边缘。高斯滤波:使用高斯函数为权重对像素进行加权平均,可以更好地平滑
- opencv 梯度幅值_基于OpenCV的图像梯度与边缘检测!
莫仝汉
opencv梯度幅值
严格的说,梯度计算需要求导数。但是图像梯度的计算,是通过计算像素值的差得到梯度的近似值。图像梯度表示的是图像变化的速度,反映了图像的边缘信息。边缘是像素值快速变化的地方。所以对于图像的边缘部分,其灰度值变化较大,梯度值也较大;对于图像中较平滑的部分,其灰度值变化较小,梯度值也较小。为了检测边缘,我们需要检测图像中的不连续性,可以使用图像梯度来检测不连续性。但是,图像梯度也会受到噪声的影响,因此建议
- 基于深度学习的信号滤波:创新技术与应用挑战
逼子歌
深度学习神经网络信号滤波图像去噪卷积神经网络长短期记忆网络
一、引言1.1研究背景随着科技的不断发展,信号处理领域面临着越来越复杂的挑战。在众多信号处理技术中,基于深度学习的信号滤波技术逐渐崭露头角,成为研究的热点。基于深度学习的信号滤波在信号处理领域具有至关重要的地位。如今,我们生活在一个数据爆炸的时代,各种信号源不断产生大量的复杂数据。例如,在通信领域,信号常常受到噪声干扰,传统的滤波方法在处理复杂、非线性信号时可能效果不佳。而深度学习技术具有自动特征
- 计算SNR
薛定谔的猫_大雪
人工智能
importcv2importnumpyasnpdefcalculate_snr(image):#读取图像img=cv2.imread(image,cv2.IMREAD_GRAYSCALE)#计算信号功率signal_power=np.mean(img)**2#计算噪声功率noise=img-np.mean(img)noise_power=np.mean(noise**2)#计算信噪比(SNR)s
- 第三章-数据预处理
moke冲冲
数据预处理的主要内容包括数据清洗、数据集成、数据变换和数据规约。3.1数据清洗数据清洗主要是删除原始数据集中的无关数据,重复数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,处理缺失值,异常值等。3.1.1缺失值处理处理缺失值的方法可分为三类:删除记录、数据插补和不处理常用的插补方法如下图插值法:拉格朗日插值法,牛顿插值法拉格朗日插值法详解:https://www.zhihu.com/questio
- 2-85 基于matlab的FrFT下时变幅度LFM信号参数估计
'Matlab学习与应用
matlab工程应用matlab人工智能算法一维插值峰值搜索方式二维峰值搜索算法下时变幅度LFM信号参数估计FrFT
基于matlab的FrFT下时变幅度LFM信号参数估计,输入高斯白噪声LFM信号(信噪比可定义),采用二维峰值搜索算法及一维插值峰值搜索方式提供计算速度,输出LFM信号参数估计结果。程序已调通,可直接运行。2-85一维插值峰值搜索方式-小红书(xiaohongshu.com)
- 影响幸福感的外部因素
An_d1fa
图片发自App生活条件是无数外部因素共同组成的,在众多因素之中,有五点容易被忽视,却能显著影响生活。一、居住环境的噪声如果你在买栋靠马路的房子,那千万要确保那栋房子不要离道路太过接近。因为你的生活会被汽车轰鸣声,引擎加速声,不耐烦的喇叭声搅乱的支离破碎。研究显示,无论过了多久,人都无法做到完成适应噪声干扰。甚至有研究显示,人有时为了适应噪声,认知功能会因而受损。各式各样、间歇出现的噪声都会干扰我们
- 深度学习速通系列:鲁棒性和稳定性
Ven%
深度学习速通系列深度学习自然语言处理人工智能pythonnlp
在机器学习中,鲁棒性和稳定性是评估模型性能的两个关键指标,它们对于确保模型在实际应用中的可靠性至关重要。鲁棒性(Robustness)定义:鲁棒性指的是模型对于输入数据的扰动、噪声、异常值或对抗性攻击的抵抗能力。一个鲁棒的模型能够在面对这些不利因素时保持其性能。提高鲁棒性的方法:数据增强:通过对训练数据进行变换(如旋转、缩放、裁剪等),使模型能够更好地泛化到未见过的数据。对抗训练:在训练过程中引入
- 探索数据变换:Transform在数据分析中的重要性
Lill_bin
杂谈数据分析数据挖掘数据库架构人工智能机器学习
在数据分析和机器学习领域,数据变换(Transform)是一个至关重要的步骤,它直接影响到模型的性能和结果的准确性。本文将深入探讨数据变换的概念、方法以及它在现代数据分析中的应用。1.数据变换的定义数据变换是指将原始数据通过某种数学方法转换为另一种形式的过程。这种转换旨在提高数据的可解释性、降低噪声、增强特征的区分度,或是为了满足特定算法的预处理需求。2.常见的数据变换方法2.1标准化(Stand
- 网络安全最新SARIMA季节项时间序列分析流程+python代码
2401_84301389
程序员python人工智能机器学习
文章目录数据流程流程分割1画图2季节项和周期项的去除3平稳性检验4白噪声检验5模型拟合6模型定阶AIC/BIC准则7检查残差是否通过检验7.1若通过检验7.2若未通过检验8模型的预测9模型的评价画图均方差等总的代码参考数据数据网站:NationalAeronauticsandSpaceAdministrationGoddardInstituteforSpaceStudies主要分析的是北美陆地表面
- 大厂嵌入式数字信号处理器(DSP)面试题及参考答案
大模型大数据攻城狮
单片机嵌入式面试模数装换器离散信号信号处理滤波器嵌入式芯片
什么是模拟信号处理和数字信号处理(DSP)在嵌入式系统中的应用?模拟信号处理是对连续变化的模拟信号进行操作和处理。在嵌入式系统中,模拟信号处理的应用包括传感器信号的调理,例如温度传感器、压力传感器等输出的模拟信号通常比较微弱且可能受到噪声干扰,需要通过放大器进行放大,通过滤波器去除噪声等操作,使其能够被后续的模数转换电路准确地转换为数字信号。数字信号处理(DSP)则是对离散的数字信号进行各种算法处
- 1-19 平滑处理——双边滤波 opencv树莓派4B 入门系列笔记
Sisphusssss
树莓派opencv笔记人工智能计算机视觉算法
目录一、提前准备二、代码详解cv2.bilateralFilter函数用于对图像进行双边滤波。双边滤波是一种保持边缘的平滑技术,常用于图像去噪声和增强图像的细节。函数的四个参数如下:三、运行现象四、完整工程贴出一、提前准备1、树莓派4B及64位系统2、提前安装opencv库以及numpy库3、保存一张图片二、代码详解importcv2#读取图像img=cv2.imread('/home/raspb
- python指南之Pandas和Matplotlib进行数据清洗
步入烟尘
Python超入门指南全册Matplotlibmatplotlib开发语言python
使用Pandas和Matplotlib进行数据清洗与可视化在数据科学领域,数据清洗和可视化是构建数据驱动解决方案的重要步骤。本文将详细介绍如何使用Pandas进行数据清洗,并结合Matplotlib进行可视化。通过实际代码示例,我们将处理一个包含缺失值、不一致格式和噪声数据的示例数据集,最终将其转换为可视化友好的形式。1.准备工作在开始之前,我们需要安装必要的Python库。如果尚未安装,可以使用
- RAFT:Adapting Language Model to Domain Specific RAG
蒸土豆的技术细节
语言模型人工智能自然语言处理
论文链接简单来说,就是你SFT微调的时候得考虑RAG的场景。RAG什么场景?你检索top-k回来,里面有相关doc有不相关doc,后者是影响性能的重要原因,LLM需要有强大的识别能力才能分得清哪块和你的query相关。微调就是为了这个。你做领域微调时,根据chunk生成query、answer,然后直接拿这仨微调,这里面没有干扰项,没有“不相关doc”,就扛不住RAG的噪声。RAFT就是针对这个搞
- Python(TensorFlow)和Java及C++受激发射损耗导图
亚图跨际
Python交叉知识算法去噪预测算法聚焦荧光团伪影消除算法囊泡动力学自动化多尺度统计物距
要点神经网络监督去噪预测算法聚焦荧光团和检测模拟平台伪影消除算法性能优化方法自动化多尺度囊泡动力学成像生物研究多维分析统计物距粒子概率算法Python和MATLAB图像降噪算法消除噪声的一种方法是将原始图像与表示低通滤波器或平滑操作的掩模进行卷积。例如,高斯掩模包含由高斯函数确定的元素。这种卷积使每个像素的值与其相邻像素的值更加协调。一般来说,平滑滤波器将每个像素设置为其自身及其附近相邻像素的平均
- 图像去噪技术:自适应均值滤波器(ACmF)
潦草通信狗
均值算法算法人工智能图像处理信息与通信matlab
在图像处理领域,噪声是影响图像质量和视觉感知的主要因素之一。椒盐噪声是一种常见的噪声类型,它随机地将像素值改变为最小值或最大值,严重影响图像的视觉效果。为了解决这一问题,我们开发了一种自适应均值滤波器(ACmF),它能够有效地去除椒盐噪声,同时保留图像的重要细节。一、ACmF算法简介ACmF算法是一种基于局部像素值的自适应去噪方法。它通过分析图像的局部区域,对噪声像素进行智能处理,以恢复图像的原始
- 基于自适应中值滤波器的图像去噪处理
潦草通信狗
计算机视觉图像处理opencv信息与通信matlab
在图像处理中,噪声是一种常见的干扰因素,其中椒盐噪声(SaltandPepperNoise)是一种典型的噪声类型,表现为图像中的随机黑白点。为了消除这种噪声,我们通常使用滤波器进行去噪处理。而自适应中值滤波器(AdaptiveMedianFilter)是一种非常有效的去噪工具。本文将通过MATLAB代码示例来展示如何使用自适应中值滤波器对图像进行去噪处理。1.导入图像并添加椒盐噪声首先,我们读取一
- 基于语言的三种图像简单去噪算法:高效C++实现
m0_57781768
C语言(C++)算法研究和解读算法c++计算机视觉
基于语言的三种图像简单去噪算法:高效C++实现图像处理在现代计算机视觉中占有重要地位,而去噪处理则是图像处理的重要环节之一。本文将介绍三种基于语言的简单图像去噪算法,并提供详细的C++实现。我们将重点介绍均值滤波、中值滤波和高斯滤波三种方法,并探讨它们在图像去噪中的应用和效果。引言在数字图像处理中,噪声是不可避免的。它可能是由传感器噪声、传输错误或压缩伪影引起的。去噪的目的是在保留图像重要特征的同
- 基于stm32f407舵机的使用以及项目的具体的使用事项
电赛张小七
电设stm32嵌入式硬件单片机硬件工程c语言
一.前提1舵机的基本概念首先要明白一点,舵机也分为很多种的,现在用的比较多的是模拟舵机和数字舵机他们的区别如下:模拟舵机和数字舵机是两种常见的舵机类型,它们在控制方式、精确度和价格等方面存在差异。模拟舵机(AnalogServo):控制方式:模拟舵机通过脉冲宽度调制(PWM)信号进行控制,其脉冲宽度通常在1到2毫秒之间变化,用来控制舵机的旋转角度。精确度:由于模拟信号容易受到干扰和噪声的影响,模拟
- 【Test 】五种滤波函数你了解多少呢?
未来可期LJ
opencv人工智能计算机视觉
文章目录1.图像滤波的概念2.方框滤波1.图像滤波的概念尽可能将图像细节特征保留下来,对目标图像的噪声进行抑制。图像中的噪声:随机的亮度或颜色干扰。⚽根据空间滤波特性可分为:线性滤波和非线性滤波。线性滤波:方框滤波、高斯滤波、均值滤波非线性滤波:双边滤波、中值滤波目的:使图像的视觉效果更好,不能破坏图像轮廓和边缘。2.方框滤波官方文档链接代码#include#includeusingnamespa
- 叶斯神经网络(BNN)在训练过程中损失函数不收敛或跳动剧烈可能是由多种因素
zhangfeng1133
算法人工智能机器学习
贝叶斯神经网络(BNN)在训练过程中损失函数不收敛或跳动剧烈可能是由多种因素引起的,以下是一些可能的原因和相应的解决方案:学习率设置不当:过高的学习率可能导致损失函数在优化过程中震荡不收敛,而过低的学习率则可能导致收敛速度过慢。可以尝试使用学习率衰减策略,或者根据任务和数据集的特点设置合适的学习率。数据问题:数据集中的噪声、异常值或不均匀的分布可能会导致模型的损失函数上升。此外,如果训练数据和验证
- opencv学习:形态学操作和边缘检测算子
夜清寒风
opencv学习人工智能算法计算机视觉
cv2.morphologyEx()是OpenCV库中的一个函数,用于执行更复杂的形态学操作。这个函数可以执行开运算、闭运算、梯度运算、膨胀、腐蚀以及顶帽和黑帽转换等。这些操作通常用于图像预处理,如去除噪声、平滑边界、突出特征等。dst=cv2.morphologyEx(src,op,kernel[,dst[,anchor[,iterations[,borderType[,borderValue]
- 随机信号是什么,随机信号的分类
cxylay
声音信号随机信号分类白噪声高斯非平稳
随机信号(RandomSignal)是指在时间或空间上,信号的取值是不可预测的,或者说是由随机过程所生成的信号。随机信号广泛存在于自然界中,例如大气噪声、电磁干扰、地震波等都可以被视为随机信号。随机信号的特点:①不可预测性:随机信号的未来取值无法通过确定性规律准确预测,只能通过统计特性来描述和估计。②统计特性描述:由于随机信号的瞬时值难以预测,因此我们通常通过统计特性,如均值、方差、自相关函数、功
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分