Given an integer array nums, return an array answer such that answer[i] is equal to the product of all the elements of nums except nums[i].
The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
You must write an algorithm that runs in O(n) time and without using the division operation.
Example 1:
Input: nums = [1,2,3,4]
Output: [24,12,8,6]
Example 2:
Input: nums = [-1,1,0,-3,3]
Output: [0,0,9,0,0]
Constraints:
2 <= nums.length <= 10^5
-30 <= nums[i] <= 30
The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
Follow up: Can you solve the problem in O(1) extra space complexity? (The output array does not count as extra space for space complexity analysis.)
Use separate dicts to store the prefix product and suffix product, then the result will be pre_prod[i] * suf_prod[i]
Time complexity: o ( n ) o(n) o(n)
Space complexity: o ( 1 ) o(1) o(1)
Use returned list as the pre_prod
, then directly times the numbers from the end to the start.
Time complexity: o ( n ) o(n) o(n)
Space complexity: o ( 1 ) o(1) o(1)
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
pre_pro, suf_pro = {}, {}
mul = 1
for i in range(len(nums)):
pre_pro[i] = mul * nums[i]
mul *= nums[i]
mul = 1
for i in range(len(nums) - 1, -1, -1):
suf_pro[i] = mul * nums[i]
mul *= nums[i]
res = []
for i in range(len(nums)):
res.append(pre_pro.get(i - 1, 1) * suf_pro.get(i + 1, 1))
return res
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
res = [1] * len(nums)
pred_prod = 1
for i in range(1, len(nums)):
pred_prod *= nums[i - 1]
res[i] *= pred_prod
pre_prod = 1
for i in range(len(nums) - 2, -1, -1):
pre_prod *= nums[i + 1]
res[i] *= pre_prod
return res