Elasticsearch

文章目录

  • 分布式搜索引擎elasticsearch
    • 介绍
      • elasticsearch作用
      • ELK技术栈
      • elasticsearch和lucene
    • 倒排索引
      • 正向索引
      • 倒排索引
      • 正向和倒排比较
    • es的一些概念
      • 文档和字段
      • 索引和映射
      • mysql与elasticsearch
    • elasticsearch安装
      • 部署单点es
      • 部署kibana
      • 安装IK分词器
      • 扩展词词典
      • 停用词典
    • 索引库操作
      • mapping映射属性
      • 索引库的CRUD
    • 文档操作
      • 新增文档
      • 查询文档
      • 删除文档
      • 修改文档
    • REST API
      • RestClient操作索引库
        • 初始化RestClient
        • 创建索引库
        • 删除索引库
        • 判断索引库是否存在
      • RestClient操作文档
        • 新增文档
        • 查询文档
        • 删除文档
        • 修改文档
        • 批量导入文档
    • DSL查询文档
      • 查询分类
      • 全文检索查询
        • 使用场景
        • 基本语法
      • 精准查询
      • ids查询
        • term查询
        • range查询
      • 地理坐标查询
        • 矩形范围查询
        • 附近查询
      • 复合查询
        • 相关性算分
        • 算分函数查询
        • 布尔查询
      • 搜索结果处理
        • 排序
        • 分页
    • RestClient查询文档
      • match查询
      • 精准查询
      • 布尔查询
      • 排序、分页
      • 高亮
        • 高亮结果解析![在这里插入图片描述](https://img-blog.csdnimg.cn/1e7854cae2d2406e970cffbc5318d40c.png)
      • 算分函数查询
    • 数据聚合
      • 聚合的种类
      • DSL实现聚合
        • Bucket聚合
        • Metric聚合
        • 总结
      • RestAPI实现聚合
        • 聚合条件语法
    • 自动补全
      • 拼音分词器
      • 自定义分词器
      • 自动补全查询
      • 自动补全查询的JavaAPI
    • 数据同步
      • 同步调用
      • 异步通知
      • 监听binlog
    • 集群
      • 集群职责划分
      • 集群分布式存储
        • 分片存储原理
      • 集群分布式查询
      • 集群式故障转移

分布式搜索引擎elasticsearch

介绍

elasticsearch作用

elasticsearch是一款非常强大的开源搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能,可以帮助我们从海量数据中快速找到需要的内容
例如:

  • 在github中搜索代码
  • 在电商网站中搜索商品
  • 在百度搜索答案
  • 在打车软件中搜索附近的车

ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域

elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。Lucene提供了搜索引擎的核心API

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。

Lucene的优势:

  • 易扩展
  • 高性能(基于倒排索引)

Lucene的缺点:

  • 只限于java语言开发
  • 学习曲线陡峭
  • 不支持水平扩展

相比Lucene,elasticsearch具备以下优势:

  • 支持分布式,可水平扩展
  • 提供Restful接口,可以被任何语言调用

倒排索引

正向索引

Elasticsearch_第1张图片
如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:
Elasticsearch_第2张图片
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机"进行搜索。
2)对用户输入内容分词,得到词条:华为手机
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。

Elasticsearch_第3张图片

正向和倒排比较

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

二者优缺点:

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

es的一些概念

文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
Elasticsearch_第4张图片
Json文档中往往包含很多的
字段(Field)
,类似于数据库中的列。

索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

Elasticsearch_第5张图片
可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

mysql与elasticsearch

MySQL Elasticsearch 说明
Table Index 索引(index),就是文档的集合,类似数据库的表(table)
Row Document 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
Column Field 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
Schema Mapping Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQL DSL DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

elasticsearch安装

部署单点es

  1. 创建网络
    因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
docker network create es-net
  1. 加载镜像
  • 可以使用docker pull elasticsearch的方式拉取镜像,但是elasticsearch镜像太大
  • 可以将本地下载好的镜像导入虚拟机,然后使用以下命令加载镜像
docker load -i es.tar
  1. 运行镜像为容器
docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

-e为配置环境:ES_JAVA_OPTS设置堆内存大小;discovery.type设置运行模式,这里设置为单点运行
-v为挂载数据卷:data和plugins分别配置了elasticsearch的数据和插件
–privileged授予逻辑卷访问权
–network加入网络
-p配置端口:9200是http协议端口,供用户访问;9300是elasticsearch各容器内通信端口

通过192.168.133.128:9200访问elasticsearch
Elasticsearch_第6张图片

部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面

  1. 加载镜像
    同样使用以下命令加载镜像
docker load -i kibana.tar
  1. 部署
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1

-e设置环境:ELASTICSEARCH_HOST配置elasticsearch地址

通过192.168.133.128:5601访问kibana
Elasticsearch_第7张图片

安装IK分词器

  1. 离线安装ik插件
    安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins

将准备好的ik
文件夹移动到es容器的插件数据卷中/var/lib/docker/volumes/es-plugins/_data

  1. 重启容器
docker restart es
  1. 测试

IK分词器包含两种模式:

  • ik_smart:最少切分
  • ik_max_word:最细切分

使用 kibana 的 dev tools:

测试:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "如果你也可以像我一样,那我觉得这件事情太酷啦"
}

结果:

{
  "tokens" : [
    {
      "token" : "如果",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "你",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "也",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "可以",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "像我",
      "start_offset" : 6,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "一样",
      "start_offset" : 8,
      "end_offset" : 10,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "一",
      "start_offset" : 8,
      "end_offset" : 9,
      "type" : "TYPE_CNUM",
      "position" : 6
    },
    {
      "token" : "样",
      "start_offset" : 9,
      "end_offset" : 10,
      "type" : "COUNT",
      "position" : 7
    },
    {
      "token" : "那我",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 8
    },
    {
      "token" : "觉得",
      "start_offset" : 13,
      "end_offset" : 15,
      "type" : "CN_WORD",
      "position" : 9
    },
    {
      "token" : "这件",
      "start_offset" : 15,
      "end_offset" : 17,
      "type" : "CN_WORD",
      "position" : 10
    },
    {
      "token" : "件事",
      "start_offset" : 16,
      "end_offset" : 18,
      "type" : "CN_WORD",
      "position" : 11
    },
    {
      "token" : "事情",
      "start_offset" : 17,
      "end_offset" : 19,
      "type" : "CN_WORD",
      "position" : 12
    },
    {
      "token" : "太酷",
      "start_offset" : 19,
      "end_offset" : 21,
      "type" : "CN_WORD",
      "position" : 13
    },
    {
      "token" : "啦",
      "start_offset" : 21,
      "end_offset" : 22,
      "type" : "CN_CHAR",
      "position" : 14
    }
  ]
}

扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“泰裤辣”,“小黑子” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

  1. 打开ik分词器config目录
  2. 在IKAnalyzer.cfg.xml配置文件内容添加

DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置comment>
        
        <entry key="ext_dict">ext.dicentry>
properties>
  1. 新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
泰裤辣
小黑子
  1. 重启elasticsearch
docker restart es
  1. 测试
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小黑子真是泰裤辣!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

停用词典

  1. IKAnalyzer.cfg.xml配置文件内容添加

DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置comment>
        
        <entry key="ext_dict">ext.dicentry>
         
        <entry key="ext_stopwords">stopword.dicentry>
properties>
  1. 在 stopword.dic 添加停用词
sb
  1. 重启elasticsearch
  2. 测试

索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。
我们要向es中存储数据,必须先创建“库”和“表”。

mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

索引库的CRUD

  1. 创建索引库和映射

基本语法:

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}
  1. 查询索引库

基本语法:

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

格式:

GET /索引库名
  1. 修改索引库
    倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}
  1. 删除索引库

语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

DELETE /索引库名

文档操作

新增文档

新增文档可以采用POST或PUT,但二者略有不同

  • PUT:需要指定文档id:POST /索引库名/_doc/文档id
  • POST:不需要指定文档id,Elasticsearch 自动生成一个唯一的文档ID:POST /索引库名/_doc

语法:

PUT /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

POST /索引库名/_doc
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

示例:

PUT /employee/_doc/1
{
  "age":"42",
  "children":{
    "daughter":"Lucy",
    "son":"David"
  },
  "height":"176.3",
  "name":"张三"
}

查询文档

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /employee/_doc/1

删除文档

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据
DELETE /employee/_doc/1

修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段
  1. 全量修改
    全量修改是覆盖原来的文档,其本质是:
  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

  1. 增量修改
    增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

REST API

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

接下来介绍Java High Level Rest Client

RestClient操作索引库

初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency>
    <groupId>org.elasticsearch.clientgroupId>
    <artifactId>elasticsearch-rest-high-level-clientartifactId>
dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties>
    <java.version>1.8java.version>
    <elasticsearch.version>7.12.1elasticsearch.version>
properties>

3)初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.150.101:9200")
));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

public class HotelIndexTest {
    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.133.128:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

创建索引库

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
CreateIndexRequest request = new CreateIndexRequest("hotel");
  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
request.source(MAPPING_TEMPLATE, XContentType.JSON);
public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。
client.indices().create(request, RequestOptions.DEFAULT);

完整代码:

@Test
    void createHotelIndex() throws IOException {
        // 1.创建Request对象
        CreateIndexRequest request = new CreateIndexRequest("hotel");
        // 2.准备请求的参数:DSL语句
        request.source(MAPPING_TEMPLATE, XContentType.JSON);
        // 3.发送请求
        client.indices().create(request, RequestOptions.DEFAULT);
    }

删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

RestClient操作文档

酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口

@SpringBootTest
public class HotelDocumentTest {
    @Autowired
    private IHotelService hotelService;

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

新增文档

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {
    @TableId(type = IdType.INPUT)
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String longitude;
    private String latitude;
    private String pic;
}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:

package cn.itcast.hotel.pojo;

import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

对应的java代码实现方法如下:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求
@Test
void testAddDocument() throws IOException {
    // 1.根据id查询酒店数据
    Hotel hotel = hotelService.getById(61083L);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将HotelDoc转json
    String json = JSON.toJSONString(hotelDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 2.准备Json文档
    request.source(json, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

查询文档

查询的DSL语句如下:

GET /hotel/_doc/{id}

因此java代码大概分为以下几步:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化
@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61082");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();

    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

删除文档

删除的DSL是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法
@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

修改文档

修改有两种方式:

  • 全量修改:本质是先根据id删除,再新增(与新增API完全一致)
  • 增量修改:修改文档中的指定字段值

增量修改代码也分为三步:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法
@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
        "price", "952",
        "starName", "四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

批量导入文档

利用BulkRequest批量将数据库数据导入到索引库中

步骤如下:

  • 利用mybatis-plus查询酒店数据

  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)

  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

其中提供了一个add方法,用来添加其他请求:

Elasticsearch_第8张图片
能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法
@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();

    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}

DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

查询分类

常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

全文检索查询

使用场景

查询基本流程:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景:

  • 商城的输入框搜索
  • 百度输入框搜索

基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

FIELD:需要查询的文档中的字段名
elasticsearch会将TEXT进行分词,然后在倒排索引库中进行查询
如果在FIELD处写all,则表明查询的是在mapping properties中被添加到all中的字段

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

query指的是希望查询的语句
fields指的是需要搜索的字段
与match不同的是,match需要将:前的FIELD替换为字段名;这里只需要修改:后的值即可

搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • ids:根据文档的id精确查询
  • term:根据词条精确值查询
  • range:根据值的范围查询

ids查询

Ids查询是一种特殊的查询,用于匹配多个文档ID。它可以在查询时指定一个或多个文档ID,然后返回这些文档的搜索结果。

语法说明:

GET /indexName/_search
{
	"query": {
		"ids": {
			"values": ["VALUE1","VALUE2","VALUE3"]
		}
	}
}

term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

当我搜索的是精确词条时,能正确查询出结果
当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到

range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

地理坐标查询

其实就是根据经纬度查询

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
// lat:维度
// lon:经度
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

Elasticsearch_第9张图片
在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

Elasticsearch_第10张图片
TF-IDF算法有一个缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。
而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

Elasticsearch_第11张图片

算分函数查询

控制相关性算分,就需要利用elasticsearch中的function score 查询

语法说明:

// function_score 查询
GET /indexName/_search
{
  "query": {
    "function_score": {
      "query": {
      	"METHOD": {
      		"FIELD": "TEXT"
      	}
      },
      "functions": [
      	{
      		"filter": {
      			"term": {
      				"FIELD": "VALUE"
      			}
      		},
      		"weight": VALUE
      	}
      ],
      "boost_mode": "multiply"	
    }
  }
}

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤。
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

语法示例:

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

  1. 普通字段排序
    keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

  1. 地理坐标排序

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

示例:
Elasticsearch_第12张图片

分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

  1. 基本分页查询

分页的基本语法如下:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}
  1. 深度分页问题

要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

RestClient查询文档

基本步骤包括:

  • 1)准备Request对象SearchRequest request = new SearchRequest("INDEXNAME");
  • 2)准备请求参数request.source().query(QUERY);
    • request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等
      • 排序:from() + sort()
      • 高亮:highlighter
      • 分页:size()
      • 查询:query()
    • query()代表查询条件,例:利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
      • QueryBuilders包含match、term、function_score、bool等各种查询
  • 3)发起请求SearchResponsse response = client.search(request, RequestOptions.DEFAULT);
  • 4)解析响应

Elasticsearch_第13张图片
elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits.getTotalHits().value:获取总条数信息
    • SearchHits.getHits():获取SearchHit数组,也就是文档数组
      • SearchHit.getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

match查询

代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

//单字段查询
QueryBuilders.matchQuery("all","TEXT");
//多字段查询
QueryBuilders.multiMatchQuery("TEXT","FIELD1","FIELD2");

结果解析代码则完全一致,可以抽取并共享。

精准查询

精确查询主要是两者:

  • term:词条精确匹配
  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

//词条查询
QueryBuilders.termQuery("FIELD","TEXT");
//范围查询
//这里的范围条件比较与DSL中相同,gte为大于等于
QueryBuilders,rangeQuery("FIELD").gte(100).lte(150);

布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询

//创建布尔函数
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
//添加must条件
boolQuery.must(QueryBuilders.termQuery("FIELD","TEXT"));
//添加filter条件
boolQuery.filter(QueryBuilders.rangeQuery("FIELD").lte(250));

API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

排序、分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

//分页
request.source().from(0).size(5);
//排序
reequest.source().sort("FIELD",SortOrder.ASC);

sort()中同样可以使用SortBuilders做参数
SortBuilders中包含各种排序方法
按地理位置排序SortBuilders.geoDistanceSort("location", new GeoPoint(location)).order(SortOrder.ASC).unit(DistanceUnit.KILOMETERS)

高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果
//requireFieldMatch是否需要和查询字段匹配
request.source().highlighter(new HighlightBuilder().field("name")).requireFieldMatch(false)

Elasticsearch_第14张图片

高亮结果解析Elasticsearch_第15张图片

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

算分函数查询

// 算分控制
    FunctionScoreQueryBuilder functionScoreQuery =
        QueryBuilders.functionScoreQuery(
        // 原始查询,相关性算分的查询
        boolQuery,
        // function score的数组
        new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
            // 其中的一个function score 元素
            new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                // 过滤条件
                QueryBuilders.termQuery("isAD", true),
                // 算分函数
                ScoreFunctionBuilders.weightFactorFunction(10)
            )
        });
    request.source().query(functionScoreQuery);

数据聚合

聚合可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

聚合的种类

聚合常见的有三类:

  • **桶(Bucket)**聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • **度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • **管道(pipeline)**聚合:其它聚合的结果为基础做聚合

**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型

DSL实现聚合

Bucket聚合

  1. 语法如下:
GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字,这里取名为brandAgg
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段。这里为brand品牌参与聚合
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}
  1. 聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}
  1. 限定聚合范围
    默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

Metric聚合

需要对桶内的文档做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

  1. 语法
GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

总结

aggs代表聚合,与query同级,此时query的作用是:限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

RestAPI实现聚合

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

request.source().size(0);
request.source().aggregation(AggregationBuilders.terms("AGGNAME").field("FIELD").size(NUM));

Elasticsearch_第16张图片
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析
Elasticsearch_第17张图片

自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
Elasticsearch_第18张图片
这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。

因为需要根据拼音字母来推断,因此要用到拼音分词功能。

拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

同样需要将解压后的文件夹上传到为es-plugins挂载的数据卷中,并重启elasticsearch

自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

Elasticsearch_第19张图片
声明自定义分词器的语法如下:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",	//分词器类型
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
		  "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。
  • 字段的内容一般是用来补全的多个词条形成的数组。

示例:

// 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

// 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

// 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

自动补全查询的JavaAPI

Elasticsearch_第20张图片
自动补全的结果也比较特殊
Elasticsearch_第21张图片

数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

同步调用

Elasticsearch_第22张图片
基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

异步通知

Elasticsearch_第23张图片

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

监听binlog

Elasticsearch_第24张图片
流程如下:

  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

Elasticsearch_第25张图片

  • 主分片(Primary shard):相对于副本分片的定义。
  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份
    Elasticsearch_第26张图片

集群职责划分

Elasticsearch_第27张图片

真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求低
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

Elasticsearch_第28张图片
脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:
Elasticsearch_第29张图片
此时,node2和node3认为node1宕机,就会重新选主:
Elasticsearch_第30张图片
当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

Elasticsearch_第31张图片
解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。

集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢

分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片shard hash(_routing) % number_of_shards

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

Elasticsearch_第32张图片

集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

Elasticsearch_第33张图片

集群式故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

你可能感兴趣的:(Spring,elasticsearch,大数据,搜索引擎)