netty服务端启动

Netty是基于Nio实现的,所以也离不开selector、serverSocketChannel、socketChannel和selectKey等,只不过Netty把这些实现都封装在了底层。

来看一个标准的netty程序:

public class EchoServer {
    private final int port;
    public EchoServer(int port) {
        this.port = port;
    }

    public void run() throws Exception {
        // Configure the server.
        EventLoopGroup bossGroup = new NioEventLoopGroup();  // (1)
        EventLoopGroup workerGroup = new NioEventLoopGroup();  
        try {
            ServerBootstrap b = new ServerBootstrap(); // (2)
            b.group(bossGroup, workerGroup)
             .channel(NioServerSocketChannel.class) // (3)
             .option(ChannelOption.SO_BACKLOG, 100)
             .handler(new LoggingHandler(LogLevel.INFO))
             .childHandler(new ChannelInitializer() { // (4)
                 @Override
                 public void initChannel(SocketChannel ch) throws Exception {
                     ch.pipeline().addLast(
                             //new LoggingHandler(LogLevel.INFO),
                             new EchoServerHandler());
                 }
             });

            // Start the server.
            ChannelFuture f = b.bind(port).sync(); // (5)

            // Wait until the server socket is closed.
            f.channel().closeFuture().sync();
        } finally {
            // Shut down all event loops to terminate all threads.
            bossGroup.shutdownGracefully();
            workerGroup.shutdownGracefully();
        }
    }

    public static void main(String[] args) throws Exception {
        int port;
        if (args.length > 0) {
            port = Integer.parseInt(args[0]);
        } else {
            port = 8080;
        }
        new EchoServer(port).run();
    }
}

EchoServerHandler 实现

public class EchoServerHandler extends ChannelInboundHandlerAdapter {  
  
    private static final Logger logger = Logger.getLogger(  
            EchoServerHandler.class.getName());  
  
    @Override  
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {  
        ctx.write(msg);  
    }  
  
    @Override  
    public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {  
        ctx.flush();  
    }  
  
    @Override  
    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {  
        // Close the connection when an exception is raised.  
        logger.log(Level.WARNING, "Unexpected exception from downstream.", cause);  
        ctx.close();  
    }  
}  

和客户端的代码相比, 没有很大的差别, 基本上也是进行了如下几个部分的初始化:

EventLoopGroup: 不论是服务器端还是客户端, 都必须指定 EventLoopGroup. 在这个例子中, 指定了 NioEventLoopGroup, 表示一个 NIO 的EventLoopGroup, 不过服务器端需要指定两个 EventLoopGroup, 一个是 bossGroup, 用于处理客户端的连接请求; 另一个是 workerGroup, 用于处理与各个客户端连接的 IO 操作.

  • ChannelType: 指定 Channel 的类型. 因为是服务器端, 因此使用了NioServerSocketChannel.
  • Handler: 设置数据的处理器.

在客户端中, Channel 的类型其实是在初始化时, 通过 Bootstrap.channel() 方法设置的, 服务器端自然也不例外.
在服务器端, 我们调用了 ServerBootstarap.channel(NioServerSocketChannel.class), 传递了一个 NioServerSocketChannel Class 对象. 这样的话, 按照和分析客户端代码一样的流程, 我们就可以确定, NioServerSocketChannel 的实例化是通过 BootstrapChannelFactory 工厂类来完成的, 而 BootstrapChannelFactory 中的 clazz 字段被设置为了 NioServerSocketChannel.class, 因此当调用 BootstrapChannelFactory.newChannel() 时:

@Override
public T newChannel() {
    // 删除 try 块
    return clazz.newInstance();
}

就获取到了一个 NioServerSocketChannel 的实例.

最后我们也来总结一下:

  • ServerBootstrap 中的 ChannelFactory 的实现是 BootstrapChannelFactory

  • 生成的 Channel 的具体类型是 NioServerSocketChannel.
    Channel 的实例化过程, 其实就是调用的 ChannelFactory.newChannel 方法, 而实例化的 Channel 的具体的类型又是和在初始化 ServerBootstrap 时传入的 channel() 方法的参数相关. 因此对于我们这个例子中的服务器端的 ServerBootstrap 而言, 生成的的 Channel 实例就是 NioServerSocketChannel.

NioServerSocketChannel 的实例化过程
下面是 NioServerSocketChannel 的类层次结构图:

image.png

首先, 我们来看一下它的默认的构造器. 和 NioSocketChannel 类似, 构造器都是调用了 newSocket 来打开一个 Java 的 NIO Socket, 不过需要注意的是, 客户端的 newSocket 调用的是 openSocketChannel, 而服务器端的 newSocket 调用的是 openServerSocketChannel. 顾名思义, 一个是客户端的 Java SocketChannel, 一个是服务器端的 Java ServerSocketChannel.

private static ServerSocketChannel newSocket(SelectorProvider provider) {
    return provider.openServerSocketChannel();
}

public NioServerSocketChannel() {
    this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}

接下来会调用重载的构造器:

public NioServerSocketChannel(ServerSocketChannel channel) {
    super(null, channel, SelectionKey.OP_ACCEPT);
    config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}

这个构造其中, 调用父类构造器时, 传入的参数是 SelectionKey.OP_ACCEPT. 作为对比, 我们回想一下, 在客户端的 Channel 初始化时, 传入的参数是 SelectionKey.OP_READ. 有 Java NIO Socket 开发经验的朋友就知道了, Java NIO 是一种 Reactor 模式, 我们通过 selector 来实现 I/O 的多路复用复用. 在一开始时, 服务器端需要监听客户端的连接请求, 因此在这里我们设置了 SelectionKey.OP_ACCEPT, 即通知 selector 我们对客户端的连接请求感兴趣.

接着和客户端的分析一下, 会逐级地调用父类的构造器 NioServerSocketChannel <- AbstractNioMessageChannel <- AbstractNioChannel <- AbstractChannel.
同样的, 在 AbstractChannel 中会实例化一个 unsafe 和 pipeline:

protected AbstractChannel(Channel parent) {
    this.parent = parent;
    unsafe = newUnsafe();
    pipeline = new DefaultChannelPipeline(this);
}

不过, 这里有一点需要注意的是, 客户端的 unsafe 是一个 AbstractNioByteChannel#NioByteUnsafe 的实例, 而在服务器端时, 因为 AbstractNioMessageChannel 重写了newUnsafe 方法:

@Override
protected AbstractNioUnsafe newUnsafe() {
    return new NioMessageUnsafe();
}

因此在服务器端, unsafe 字段其实是一个 AbstractNioMessageChannel#AbstractNioUnsafe 的实例.
我们来总结一下, 在 NioServerSocketChannsl 实例化过程中, 所需要做的工作:

调用 NioServerSocketChannel.newSocket(DEFAULT_SELECTOR_PROVIDER) 打开一个新的 Java NIO ServerSocketChannel

AbstractChannel(Channel parent) 中初始化 AbstractChannel 的属性:

     parent 属性置为 null

    unsafe 通过newUnsafe() 实例化一个 unsafe 对象, 它的类型是 AbstractNioMessageChannel#AbstractNioUnsafe 内部类

     pipeline 是 new DefaultChannelPipeline(this) 新创建的实例.

AbstractNioChannel 中的属性:

     SelectableChannel ch 被设置为 Java ServerSocketChannel, 即 NioServerSocketChannel#newSocket 返回的 Java NIO ServerSocketChannel.

     readInterestOp 被设置为 SelectionKey.OP_ACCEPT

    SelectableChannel ch 被配置为非阻塞的 ch.configureBlocking(false)

NioServerSocketChannel 中的属性:

     ServerSocketChannelConfig config = new NioServerSocketChannelConfig(this, javaChannel().socket())
Channel 的注册

服务器端和客户端的 Channel 的注册过程一致, 因此就不再单独分析了.

关于 bossGroup 与 workerGroup

可以看出一切从ServerBootstrap开始,ServerBootstrap实例中需要两个NioEventLoopGroup实例,按照职责划分成boss和work,有着不同的分工:

  • boss负责请求的accept
  • work负责请求的read、write

NioEventLoopGroup

NioEventLoopGroup主要管理eventLoop的生命周期。在客户端的时候, 我们只提供了一个 EventLoopGroup 对象, 而在服务器端的初始化时, 我们设置了两个 EventLoopGroup, 一个是 bossGroup, 另一个是 workerGroup. 那么这两个 EventLoopGroup 都是干什么用的呢? bossGroup 是用于服务端 的 accept 的, 即用于处理客户端的连接请求. 我们可以把 Netty 比作一个饭店, bossGroup 就像一个像一个前台接待, 当客户来到饭店吃时, 接待员就会引导顾客就坐, 为顾客端茶送水等. 而 workerGroup, 其实就是实际上干活的啦, 它们负责客户端连接通道的 IO 操作: 当接待员 招待好顾客后, 就可以稍做休息, 而此时后厨里的厨师们(workerGroup)就开始忙碌地准备饭菜了.
关于 bossGroup 与 workerGroup 的关系, 我们可以用如下图来展示:

image.png
image.png

首先, 服务器端 bossGroup 不断地监听是否有客户端的连接, 当发现有一个新的客户端连接到来时, bossGroup 就会为此连接初始化各项资源, 然后从 workerGroup 中选出一个 EventLoop 绑定到此客户端连接中. 那么接下来的服务器与客户端的交互过程就全部在此分配的 EventLoop 中了.
首先在ServerBootstrap 初始化时, 调用了 b.group(bossGroup, workerGroup) 设置了两个 EventLoopGroup, 我们跟踪进去看一下:

public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) {
    super.group(parentGroup);
    ...
    this.childGroup = childGroup;
    return this;
}

显然, 这个方法初始化了两个字段, 一个是 group = parentGroup, 它是在 super.group(parentGroup) 中初始化的, 另一个是 childGroup = childGroup. 接着我们启动程序调用了 b.bind 方法来监听一个本地端口. bind 方法会触发如下的调用链:

AbstractBootstrap.bind -> AbstractBootstrap.doBind -> AbstractBootstrap.initAndRegister

final ChannelFuture initAndRegister() {
    final Channel channel = channelFactory().newChannel();
    ... 省略异常判断
    init(channel);
    ChannelFuture regFuture = group().register(channel);
    return regFuture;
}

这里 group() 方法返回的是上面我们提到的 bossGroup, 而这里的 channel 我们也已经分析过了, 它是一个是一个 NioServerSocketChannsl 实例, 因此我们可以知道, group().register(channel) 将 bossGroup 和 NioServerSocketChannsl 关联起来了.
那么 workerGroup 是在哪里与 NioSocketChannel 关联的呢?
我们继续看 init(channel) 方法:

@Override
void init(Channel channel) throws Exception {
    ...
    ChannelPipeline p = channel.pipeline();

    final EventLoopGroup currentChildGroup = childGroup;
    final ChannelHandler currentChildHandler = childHandler;
    final Entry, Object>[] currentChildOptions;
    final Entry, Object>[] currentChildAttrs;

    p.addLast(new ChannelInitializer() {
        @Override
        public void initChannel(Channel ch) throws Exception {
            ChannelPipeline pipeline = ch.pipeline();
            ChannelHandler handler = handler();
            if (handler != null) {
                pipeline.addLast(handler);
            }
            pipeline.addLast(new ServerBootstrapAcceptor(
                    currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
        }
    });
}

init 方法在 ServerBootstrap 中重写了, 从上面的代码片段中我们看到, 它为 pipeline 中添加了一个 ChannelInitializer, 而这个 ChannelInitializer 中添加了一个关键的 ServerBootstrapAcceptor handler. 我们看一下 ServerBootstrapAcceptor 类.
ServerBootstrapAcceptor 中重写了 channelRead 方法, 其主要代码如下:

@Override
@SuppressWarnings("unchecked")
public void channelRead(ChannelHandlerContext ctx, Object msg) {
    final Channel child = (Channel) msg;
    child.pipeline().addLast(childHandler);
    ...
    childGroup.register(child).addListener(...);
}

ServerBootstrapAcceptor 中的 childGroup 是构造此对象是传入的 currentChildGroup, 即我们的 workerGroup, 而 Channel 是一个 NioSocketChannel 的实例, 因此这里的 childGroup.register 就是将 workerGroup 中的 EventLoop 和 NioSocketChannel 关联了. 既然这样, 那么现在的问题是, ServerBootstrapAcceptor.channelRead 方法是怎么被调用的呢? 其实当一个 client 连接到 server 时, Java 底层的 NIO ServerSocketChannel 会有一个 SelectionKey.OP_ACCEPT 就绪事件, 接着就会调用到 NioServerSocketChannel.doReadMessages:

@Override
protected int doReadMessages(List buf) throws Exception {
    SocketChannel ch = javaChannel().accept();
    ... 省略异常处理
    buf.add(new NioSocketChannel(this, ch));
    return 1;
}

在 doReadMessages 中, 通过 javaChannel().accept() 获取到客户端新连接的 SocketChannel, 接着就实例化一个 NioSocketChannel, 并且传入 NioServerSocketChannel 对象(即 this), 由此可知, 我们创建的这个 NioSocketChannel 的父 Channel 就是 NioServerSocketChannel 实例 .
接下来就经由 Netty 的 ChannelPipeline 机制, 将读取事件逐级发送到各个 handler 中, 于是就会触发前面我们提到的 ServerBootstrapAcceptor.channelRead 方法啦.

我们再来看看NioEventLoopGroup构造方法:

public NioEventLoopGroup() {  
    this(0);  
}  
  
public NioEventLoopGroup(int nThreads) {  
    this(nThreads, null); 
}  
  
public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {  
    this(nThreads, threadFactory, SelectorProvider.provider());  
}  
  
public NioEventLoopGroup(  
            int nThreads, ThreadFactory threadFactory, final SelectorProvider selectorProvider) {  
    super(nThreads, threadFactory, selectorProvider);  
}  

MultithreadEventLoopGroup是NioEventLoopGroup的父类,构造方法:

protected MultithreadEventLoopGroup(int nThreads, ThreadFactory threadFactory, Object... args) {  
    super(nThreads == 0? DEFAULT_EVENT_LOOP_THREADS : nThreads, threadFactory, args);  
}  

其中 DEFAULT_EVENT_LOOP_THREADS 为处理器数量的两倍。
MultithreadEventExecutorGroup是核心,管理eventLoop的生命周期,先看看其中几个变量。
1、children:EventExecutor数组,保存eventLoop。
2、chooser:从children中选取一个eventLoop的策略。

protected MultithreadEventExecutorGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
    if (nThreads <= 0) {
        throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
    }

    if (threadFactory == null) {
        threadFactory = newDefaultThreadFactory();
    }
// 根据数组的大小,采用不同策略初始化chooser,如果大小为2的幂次方,则采用PowerOfTwoEventExecutorChooser,否则使用GenericEventExecutorChooser。

    children = new SingleThreadEventExecutor[nThreads];
    if (isPowerOfTwo(children.length)) {
        chooser = new PowerOfTwoEventExecutorChooser();
    } else {
        chooser = new GenericEventExecutorChooser();
    }

    for (int i = 0; i < nThreads; i ++) {
        boolean success = false;
        try {
            children[i] = newChild(threadFactory, args);
            success = true;
        } catch (Exception e) {
            // TODO: Think about if this is a good exception type
            throw new IllegalStateException("failed to create a child event loop", e);
        } finally {
            if (!success) {
                for (int j = 0; j < i; j ++) {
                    children[j].shutdownGracefully();
                }

                for (int j = 0; j < i; j ++) {
                    EventExecutor e = children[j];
                    try {
                        while (!e.isTerminated()) {
                            e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
                        }
                    } catch (InterruptedException interrupted) {
                        Thread.currentThread().interrupt();
                        break;
                    }
                }
            }
        }
    }

    final FutureListener terminationListener = new FutureListener() {
        @Override
        public void operationComplete(Future future) throws Exception {
            if (terminatedChildren.incrementAndGet() == children.length) {
                terminationFuture.setSuccess(null);
            }
        }
    };

    for (EventExecutor e: children) {
        e.terminationFuture().addListener(terminationListener);
    }
}

 protected EventExecutor newChild(  
            ThreadFactory threadFactory, Object... args) throws Exception {  
      return new NioEventLoop(this, threadFactory, (SelectorProvider) args[0]);  
}  

1、根据数组的大小,采用不同策略初始化chooser,如果大小为2的幂次方,则采用PowerOfTwoEventExecutorChooser,否则使用GenericEventExecutorChooser。
其中判断一个数是否是2的幂次方的方法很有技巧:

private static boolean isPowerOfTwo(int val) {
      return (val & -val) == val;
}

2、newChild方法重载,初始化EventExecutor时,实际执行的是NioEventLoopGroup中的newChild方法,所以children元素的实际类型为NioEventLoop。

接下去看看NioEventLoop类。

每个eventLoop会维护一个selector和taskQueue,负责处理客户端请求和内部任务,如ServerSocketChannel注册和ServerSocket绑定等。

image.png
NioEventLoop(NioEventLoopGroup parent, ThreadFactory threadFactory, SelectorProvider selectorProvider) {  
      super(parent, threadFactory, false);  
      if (selectorProvider == null) {  
          throw new NullPointerException("selectorProvider");  
      }  
      provider = selectorProvider;  
      selector = openSelector();  
}

当看到 selector = openSelector() 时,有没有觉得亲切了许多。看看SingleThreadEventLoop类。它是NioEventLoop的父类,

protected SingleThreadEventLoop(EventLoopGroup parent, ThreadFactory threadFactory, boolean addTaskWakesUp) {
    super(parent, threadFactory, addTaskWakesUp);
}

继续看SingleThreadEventLoop的父类SingleThreadEventExecutor

从类名上可以看出,这是一个只有一个线程的线程池, 先看看其中的几个变量:
1、state:线程池当前的状态
2、taskQueue:存放任务的队列
3、thread:线程池维护的唯一线程
4、scheduledTaskQueue:定义在其父类AbstractScheduledEventExecutor中,用以保存延迟执行的任务。

protected SingleThreadEventExecutor(EventExecutorGroup parent, ThreadFactory threadFactory, boolean addTaskWakesUp) {
    if (threadFactory == null) {
        throw new NullPointerException("threadFactory");
    }
    this.parent = parent;
    this.addTaskWakesUp = addTaskWakesUp;

    thread = threadFactory.newThread(new Runnable() {
        @Override
        public void run() {
            boolean success = false;
            updateLastExecutionTime();
            try {
                SingleThreadEventExecutor.this.run();
                success = true;
            } catch (Throwable t) {
                logger.warn("Unexpected exception from an event executor: ", t);
            } finally {
                for (;;) {
                    int oldState = STATE_UPDATER.get(SingleThreadEventExecutor.this);
                    if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet(
                            SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) {
                        break;
                    }
                }
                // Check if confirmShutdown() was called at the end of the loop.
                if (success && gracefulShutdownStartTime == 0) {
                    logger.error(
                            "Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
                            SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " +
                            "before run() implementation terminates.");
                }

                try {
                    // Run all remaining tasks and shutdown hooks.
                    for (;;) {
                        if (confirmShutdown()) {
                            break;
                        }
                    }
                } finally {
                    try {
                        cleanup();
                    } finally {
                        STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED);
                        threadLock.release();
                        if (!taskQueue.isEmpty()) {
                            logger.warn(
                                    "An event executor terminated with " +
                                    "non-empty task queue (" + taskQueue.size() + ')');
                        }

                        terminationFuture.setSuccess(null);
                    }
                }
            }
        }
    });
    threadProperties = new DefaultThreadProperties(thread);
    taskQueue = newTaskQueue();
}

代码很长,内容很简单:
1、初始化一个线程,并在线程内部执行NioEventLoop类的run方法,当然这个线程不会立刻执行。
2、使用LinkedBlockingQueue类初始化taskQueue。

ServerBootstrap

通过serverBootstrap.bind(port)启动服务,过程如下:

/**
 * Create a new {@link Channel} and bind it.
 */
public ChannelFuture bind() {
    validate();
    SocketAddress localAddress = this.localAddress;
    if (localAddress == null) {
       throw new IllegalStateException("localAddress not set");
    }
    return doBind(localAddress);
 }
image.png
image.png
final ChannelFuture initAndRegister() {
    final Channel channel = channelFactory().newChannel();
    try {
        init(channel);
    } catch (Throwable t) {
        channel.unsafe().closeForcibly();
        // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
        return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
    }

    ChannelFuture regFuture = group().register(channel);
    if (regFuture.cause() != null) {
        if (channel.isRegistered()) {
            channel.close();
        } else {
            channel.unsafe().closeForcibly();
        }
    }
    return regFuture;
}

1、负责创建服务端的NioServerSocketChannel实例
2、为NioServerSocketChannel的pipeline添加handler
3、注册NioServerSocketChannel到selector

NioServerSocketChannel

对Nio的ServerSocketChannel和SelectionKey进行了封装。

public NioServerSocketChannel() {
    this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}

private static ServerSocketChannel newSocket(SelectorProvider provider) {
    try {
        return provider.openServerSocketChannel();
    } catch (IOException e) {
        throw new ChannelException(
                "Failed to open a server socket.", e);
    }
}

public NioServerSocketChannel(ServerSocketChannel channel) {
    super(null, channel, SelectionKey.OP_ACCEPT);
    config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}

1、方法newSocket利用 provider.openServerSocketChannel() 生成Nio中的ServerSocketChannel对象。
2、设置SelectionKey.OP_ACCEPT事件。

父类AbstractNioMessageChannel构造方法

protected  AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
    super(parent, ch, readInterestOp);
}
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
    super(parent);
    this.ch = ch;
    this.readInterestOp = readInterestOp;
    try {
        ch.configureBlocking(false);
    } catch (IOException e) {
        try {
            ch.close();
        } catch (IOException e2) {
            if (logger.isWarnEnabled()) {
                logger.warn(
                        "Failed to close a partially initialized socket.", e2);
            }
        }

        throw new ChannelException("Failed to enter non-blocking mode.", e);
    }
}

设置当前ServerSocketChannel为非阻塞通道。

protected AbstractChannel(Channel parent) {
    this.parent = parent;
    unsafe = newUnsafe();
    pipeline = new DefaultChannelPipeline(this);
}

1、初始化unsafe,这里的Unsafe并非是jdk中底层Unsafe类,用来负责底层的connect、register、read和write等操作。
2、初始化pipeline,每个Channel都有自己的pipeline,当有请求事件发生时,pipeline负责调用相应的hander进行处理。

回到ServerBootstrap的init(Channel channel)方法,添加handler到channel的pipeline中。

void init(Channel channel) throws Exception {
    final Map, Object> options = options();
    synchronized (options) {
        channel.config().setOptions(options);
    }

    final Map, Object> attrs = attrs();
    synchronized (attrs) {
        for (Entry, Object> e: attrs.entrySet()) {
            @SuppressWarnings("unchecked")
            AttributeKey key = (AttributeKey) e.getKey();
            channel.attr(key).set(e.getValue());
        }
    }

    ChannelPipeline p = channel.pipeline();

    final EventLoopGroup currentChildGroup = childGroup;
    final ChannelHandler currentChildHandler = childHandler;
    final Entry, Object>[] currentChildOptions;
    final Entry, Object>[] currentChildAttrs;
    synchronized (childOptions) {
        currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));
    }
    synchronized (childAttrs) {
        currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));
    }

    p.addLast(new ChannelInitializer() {
        @Override
        public void initChannel(Channel ch) throws Exception {
            ChannelPipeline pipeline = ch.pipeline();
            ChannelHandler handler = handler();
            if (handler != null) {
                pipeline.addLast(handler);
            }
            pipeline.addLast(new ServerBootstrapAcceptor(
                    currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
        }
    });
}


1、设置channel的options和attrs。
2、在pipeline中添加一个ChannelInitializer对象。

init执行完,需要把当前channel注册到EventLoopGroup。其实最终目的是为了实现Nio中把ServerSocket注册到selector上,这样就可以实现client请求的监听了

public ChannelFuture register(Channel channel, ChannelPromise promise) {
    return next().register(channel, promise);
}

public EventLoop next() {
    return (EventLoop) super.next();
}

public EventExecutor next() {
    return children[Math.abs(childIndex.getAndIncrement() % children.length)];
}

因为EventLoopGroup中维护了多个eventLoop,next方法会调用chooser策略找到下一个eventLoop,并执行eventLoop的register方法进行注册。

public ChannelFuture register(final Channel channel, final ChannelPromise promise) {
    ...
    channel.unsafe().register(this, promise);
    return promise;
}

channel.unsafe()是什么?
NioServerSocketChannel初始化时,会创建一个NioMessageUnsafe实例,用于实现底层的register、read、write等操作。

eventLoop.execute(new Runnable() {
   @Override
   public void run() {
      register0(promise);
   }
});

private void register0(ChannelPromise promise) {
    try {
        if (!ensureOpen(promise)) {
            return;
        }
        Runnable postRegisterTask = doRegister();
        registered = true;
        promise.setSuccess();
        pipeline.fireChannelRegistered();
        if (postRegisterTask != null) {
            postRegisterTask.run();
        }
        if (isActive()) {
            pipeline.fireChannelActive();
        }
    } catch (Throwable t) {
        // Close the channel directly to avoid FD leak.
        closeForcibly();
        if (!promise.tryFailure(t)) {
            
        }
        closeFuture.setClosed();
    }
}

public void execute(Runnable task) {
    if (task == null) {
        throw new NullPointerException("task");
    }

    boolean inEventLoop = inEventLoop();
    if (inEventLoop) {
        addTask(task);
    } else {
        startThread();
        addTask(task);
        if (isShutdown() && removeTask(task)) {
            reject();
        }
    }

    if (!addTaskWakesUp) {
        wakeup(inEventLoop);
    }
}

1、register0方法提交到eventLoop线程池中执行,这个时候会启动eventLoop中的线程。
2、方法doRegister()才是最终Nio中的注册方法,方法javaChannel()获取ServerSocketChannel。

protected Runnable doRegister() throws Exception {
    boolean selected = false;
    for (;;) {
        try {
            selectionKey = javaChannel().register(eventLoop().selector, 0, this);
            return null;
        } catch (CancelledKeyException e) {
            if (!selected) {
                // Force the Selector to select now  as the "canceled" SelectionKey may still be
                // cached and not removed because no Select.select(..) operation was called yet.
                eventLoop().selectNow();
                selected = true;
            } else {
                // We forced a select operation on the selector before but the SelectionKey is still cached
                // for whatever reason. JDK bug ?
                throw e;
            }
        }
    }
}

ServerSocketChannel注册完之后,通知pipeline执行fireChannelRegistered方法,pipeline中维护了handler链表,通过遍历链表,执行InBound类型handler的channelRegistered方法,最终执行init中添加的ChannelInitializer handler。

 public final void channelRegistered(ChannelHandlerContext ctx) throws Exception {
        initChannel((C) ctx.channel());
        ctx.pipeline().remove(this);
        ctx.fireChannelRegistered();
    }

1、initChannel方法最终把ServerBootstrapAcceptor添加到ServerSocketChannel的pipeline,负责accept客户端请求。
2、在pipeline中删除对应的handler。
3、触发fireChannelRegistered方法,可以自定义handler的channelRegistered方法。

到目前为止,ServerSocketChannel完成了初始化并注册到seletor上,启动线程执行selector.select()方法准备接受客户端请求。

,ServerSocketChannel的socket还未绑定到指定端口,那么这一块Netty是如何实现的? Netty把注册操作放到eventLoop中执行。

private static void doBind0(
        final ChannelFuture regFuture, 
        final Channel channel,
        final SocketAddress localAddress, 
        final ChannelPromise promise) {
    channel.eventLoop().execute(new Runnable() {
        @Override
        public void run() {
            if (regFuture.isSuccess()) {
                channel.bind(localAddress, promise)
.addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
            } else {
                promise.setFailure(regFuture.cause());
            }
        }
    });
}

public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
    return pipeline.bind(localAddress, promise);
}

@Override
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
    return tail.bind(localAddress, promise);
}


@Override
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
    if (localAddress == null) {
        throw new NullPointerException("localAddress");
    }
    validatePromise(promise, false);
    return findContextOutbound().invokeBind(localAddress, promise);
}

private ChannelFuture invokeBind(final SocketAddress localAddress, final ChannelPromise promise) {
    EventExecutor executor = executor();
    if (executor.inEventLoop()) {
        invokeBind0(localAddress, promise);
    } else {
        executor.execute(new Runnable() {
            @Override
            public void run() {
                invokeBind0(localAddress, promise);
            }
        });
    }
    return promise;
}

private void invokeBind0(SocketAddress localAddress, ChannelPromise promise) {
    try {
        ((ChannelOutboundHandler) handler()).bind(this, localAddress, promise);
    } catch (Throwable t) {
        notifyOutboundHandlerException(t, promise);
    }
}

@Override
public void bind(
        ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)
        throws Exception {
    unsafe.bind(localAddress, promise);
}

最终由unsafe实现端口的bind操作。

public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
        if (!ensureOpen(promise)) {
            return;
        }

        try {
            boolean wasActive = isActive();
            ...        
            doBind(localAddress);
            promise.setSuccess();
            if (!wasActive && isActive()) {
                pipeline.fireChannelActive();
            }
        } catch (Throwable t) {
            promise.setFailure(t);
            closeIfClosed();
        }
    }

protected void doBind(SocketAddress localAddress) throws Exception {
    javaChannel().socket().bind(localAddress, config.getBacklog());
}

bind完成后,且ServerSocketChannel也已经注册完成,则触发pipeline的fireChannelActive方法,所以在这里可以自定义fireChannelActive方法,默认执行tail的fireChannelActive。

@Override
public ChannelPipeline fireChannelActive() {
    head.fireChannelActive();

    if (channel.config().isAutoRead()) {
        channel.read();
    }

    return this;
}

channel.read()方法会触发pipeline的行为:

@Override
public Channel read() {
    pipeline.read();
    return this;
}

@Override
public ChannelPipeline read() {
    tail.read();
    return this;
}

@Override
public ChannelHandlerContext read() {
    findContextOutbound().invokeRead();
    return this;
}

private void invokeRead() {
    EventExecutor executor = executor();
    if (executor.inEventLoop()) {
        invokeRead0();
    } else {
        Runnable task = invokeRead0Task;
        if (task == null) {
            invokeRead0Task = task = new Runnable() {
                @Override
                public void run() {
                    invokeRead0();
                }
            };
        }
        executor.execute(task);
    }
}

private void invokeRead0() {
    try {
        ((ChannelOutboundHandler) handler()).read(this);
    } catch (Throwable t) {
        notifyHandlerException(t);
    }
}

handler 的添加过程

和 EventLoopGroup 一样, 服务器端的 handler 也有两个, 一个是通过 handler() 方法设置 handler 字段, 另一个是通过 childHandler() 设置 childHandler 字段. 通过前面的 bossGroup 和 workerGroup 的分析, 其实我们在这里可以大胆地猜测: handler 字段与 accept 过程有关, 即这个 handler 负责处理客户端的连接请求; 而 childHandler 就是负责和客户端的连接的 IO 交互.

在 上面 bossGroup 与 workerGroup , 我们提到, ServerBootstrap 重写了 init 方法, 在这个方法中添加了 handler:

@Override
void init(Channel channel) throws Exception {
    ...
    ChannelPipeline p = channel.pipeline();

    final EventLoopGroup currentChildGroup = childGroup;
    final ChannelHandler currentChildHandler = childHandler;
    final Entry, Object>[] currentChildOptions;
    final Entry, Object>[] currentChildAttrs;

    p.addLast(new ChannelInitializer() {
        @Override
        public void initChannel(Channel ch) throws Exception {
            ChannelPipeline pipeline = ch.pipeline();
            ChannelHandler handler = handler();
            if (handler != null) {
                pipeline.addLast(handler);
            }
            pipeline.addLast(new ServerBootstrapAcceptor(
                    currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
        }
    });
}

上面代码的 initChannel 方法中, 首先通过 handler() 方法获取一个 handler, 如果获取的 handler 不为空,则添加到 pipeline 中. 然后接着, 添加了一个 ServerBootstrapAcceptor 实例. 那么这里 handler() 方法返回的是哪个对象呢? 其实它返回的是 handler 字段, 而这个字段就是我们在服务器端的启动代码中设置的:

b.group(bossGroup, workerGroup)
 ...
 .handler(new LoggingHandler(LogLevel.INFO))

那么这个时候, pipeline 中的 handler 情况如下:

image.png

根据我们原来分析客户端的经验, 我们指定, 当 channel 绑定到 eventLoop 后(在这里是 NioServerSocketChannel 绑定到 bossGroup)中时, 会在 pipeline 中发出 fireChannelRegistered 事件, 接着就会触发 ChannelInitializer.initChannel 方法的调用.

 private void register0(ChannelPromise promise) {
            try {
            ...
                boolean firstRegistration = neverRegistered;
                doRegister();
                neverRegistered = false;
                registered = true;
                safeSetSuccess(promise);
                pipeline.fireChannelRegistered(); // 这里触发
                // Only fire a channelActive if the channel has never been registered. This prevents firing
                // multiple channel actives if the channel is deregistered and re-registered.
                if (firstRegistration && isActive()) {
                    pipeline.fireChannelActive();
                }

当 channel 绑定到 eventLoop 后(在这里是 NioServerSocketChannel 绑定到 bossGroup)中时, 会在 pipeline 中发出 fireChannelRegistered 事件, 接着就会触发 ChannelInitializer.initChannel 方法的调用.

 public final void channelRegistered(ChannelHandlerContext ctx) throws Exception {
        initChannel((C) ctx.channel());
        ctx.pipeline().remove(this);
        ctx.fireChannelRegistered();
    }

因此在绑定完成后, 此时的 pipeline 的内如如下:

image.png

前面我们在分析 bossGroup 和 workerGroup 时, 已经知道了在 ServerBootstrapAcceptor.channelRead 中会为新建的 Channel 设置 handler 并注册到一个 eventLoop 中, 即:

@Override
@SuppressWarnings("unchecked")
public void channelRead(ChannelHandlerContext ctx, Object msg) {
    final Channel child = (Channel) msg;
    child.pipeline().addLast(childHandler);
    ...
    childGroup.register(child).addListener(...);
}

而这里的 childHandler 就是我们在服务器端启动代码中设置的 handler:

b.group(bossGroup, workerGroup)
 ...
 .childHandler(new ChannelInitializer() {
     @Override
     public void initChannel(SocketChannel ch) throws Exception {
         ChannelPipeline p = ch.pipeline();
         if (sslCtx != null) {
             p.addLast(sslCtx.newHandler(ch.alloc()));
         }
         //p.addLast(new LoggingHandler(LogLevel.INFO));
         p.addLast(new EchoServerHandler());
     }
 });

, 当这个客户端连接 Channel 注册后, 就会触发 ChannelInitializer.initChannel 方法的调用, 此后的客户端连接的 ChannelPipeline 状态如下:


image.png

最后我们来总结一下服务器端的 handler 与 childHandler 的区别与联系:

  • 在服务器 NioServerSocketChannel 的 pipeline 中添加的是 handler 与 ServerBootstrapAcceptor.
  • 当有新的客户端连接请求时, ServerBootstrapAcceptor.channelRead 中负责新建此连接的 NioSocketChannel 并添加 childHandler 到 NioSocketChannel 对应的 pipeline 中, 并将此 channel 绑定到 workerGroup 中的某个 eventLoop 中.
  • handler 是在 accept 阶段起作用, 它处理客户端的连接请求.
  • childHandler 是在客户端连接建立以后起作用, 它负责客户端连接的 IO 交互.


    image.png

你可能感兴趣的:(netty服务端启动)