目录
1. 消息队列
1.1 优点
1.1.1 异步
1.1.2 解耦
1.1.3 削峰
1.2 缺点
1.2.1 降低了系统的可用性
1.2.2 增加系统的复杂度
1.2.3 重复消费问题
1.2.4 消息的顺序消费问题
1.2.5 分布式事务
1.2.6 消息堆积问题
2. RocketMQ
2.1 队列模型和主题模型
2.1.1 队列模型
2.1.2 主题模型
2.1.3 RocketMQ中的消息模型
2.2 架构图
2.2.1 Broker
2.2.2 NameServer
2.2.3 Producer
2.2.4 Consumer
2.3 如何解决顺序消费和重复消费问题
2.3.1 解决顺序消费问题
2.3.2 重复消费
2.4 分布式事务
2.5 消息堆积问题
2.6 回溯消费
2.7 刷盘机制
2.7.1 同步和异步刷盘
2.7.2 同步和异步复制
2.8 存储机制
分布式应用必定涉及到各个系统之间的通信问题,这个时候消息队列也应运而生了。可以说分布式的产生是消息队列的基础。
你可能会反驳我,应用之间的通信又不是只能由消息队列解决,好好的通信为什么中间非要插一个消息队列呢?我不能直接进行通信吗?
很好,你又提出了一个概念,同步通信。就比如现在业界使用比较多的 Dubbo
就是一个适用于各个系统之间同步通信的 RPC
框架。
比如我们有一个购票系统,需求是用户在购买完之后能接收到购买完成的短信。
我们省略中间的网络通信时间消耗,假如购票系统处理需要 150ms ,短信系统处理需要 200ms ,那么整个处理流程的时间消耗就是 150ms + 200ms = 350ms。
当然,乍看没什么问题。可是仔细一想你就感觉有点问题,我用户购票在购票系统的时候其实就已经完成了购买,而我现在通过同步调用非要让整个请求拉长时间,而短息系统这玩意又不是很有必要,它仅仅是一个辅助功能增强用户体验感而已。我现在整个调用流程就有点 头重脚轻 的感觉了,购票是一个不太耗时的流程,而我现在因为同步调用,非要等待发送短信这个比较耗时的操作才返回结果。那我如果再加一个发送邮件呢?
这样整个系统的调用链又变长了,整个时间就变成了550ms。
其实我们只要关心和购买系统的交互,只要在购买系统购买成功 (传达一个消息) ,然后我们就可以安心的玩手机了 (干自己其他事情) 。这其中我们也就传达了一个消息,然后我们又转过头干其他事情了。这其中虽然购买的时间没有变短,但是我们只需要传达一个消息就可以看其他事情了,这是一个 异步 的概念。
这样,我们在将消息存入消息队列之后我们就可以直接返回了,所以整个耗时只是 150ms + 10ms = 160ms。
回到最初同步调用的过程,我们写个伪代码简单概括一下。
public void purchaseticket(Request request) {
validate(request); // 校验
Result result = purchase(request); // 购票
sendmessage(result); // 发送信息
}
那么第二步,我们又添加了一个发送邮件,我们就得重新去修改代码,如果我们又加一个需求:用户购买完还需要给他加积分,这个时候我们是不是又得改代码?
public void purchaseticket(Request request) {
validate(request); // 校验
Result result = purchase(request); // 购票
sendmessage(result); // 发送信息
sendemail (result); // 发送邮件
addpoint (reulst); // 增加积分
...
}
这样改来改去是不是很麻烦,那么 此时我们就用一个消息队列在中间进行解耦 。你需要注意的是,我们后面的发送短信、发送邮件、添加积分等一些操作都依赖于上面的 result
,这东西抽象出来就是购票的处理结果呀,比如订单号,用户账号等等,也就是说我们后面的一系列服务都是需要同样的消息来进行处理。既然这样,我们是不是可以通过 “广播消息” 来实现。
我上面所讲的“广播”并不是真正的广播,而是接下来的系统作为消费者去 订阅 特定的主题。比如我们这里的主题就可以叫做 订票
,我们购买系统作为一个生产者去生产这条消息放入消息队列,然后消费者订阅了这个主题,会从消息队列中拉取消息并消费。就比如我们刚刚画的那张图,你会发现,在生产者这边我们只需要关注 生产消息到指定主题中 ,而 消费者只需要关注从指定主题中拉取消息 就行了。
如果没有消息队列,每当一个新的业务接入,我们都要在主系统调用新接口、或者当我们取消某些业务,我们也得在主系统删除某些接口调用。有了消息队列,我们只需要关心消息是否送达了队列,至于谁希望订阅,接下来收到消息如何处理,是下游的事情,无疑极大地减少了开发和联调的工作量。
我们再次回到一开始我们使用同步调用系统的情况,并且思考一下,如果此时有大量用户请求购票整个系统会变成什么样?
如果,此时有一万的请求进入购票系统,我们知道运行我们主业务的服务器配置一般会比较好,所以这里我们假设购票系统能承受这一万的用户请求,那么也就意味着我们同时也会出现一万调用发短信服务的请求。而对于短信系统来说并不是我们的主要业务,所以我们配备的硬件资源并不会太高,那么你觉得现在这个短信系统能承受这一万的峰值么,且不说能不能承受,系统会不会 直接崩溃 了?
短信业务又不是我们的主业务,我们能不能 折中处理 呢?如果我们把购买完成的信息发送到消息队列中,而短信系统 尽自己所能地去消息队列中取消息和消费消息 ,即使处理速度慢一点也无所谓,只要我们的系统没有崩溃就行了。
留得江山在,还怕没柴烧?你敢说每次发送验证码的时候是一发你就收到了的么?
没有哪一门技术是“银弹”,消息队列也有它的副作用。
本来好好的两个系统之间的调用,我中间加了个消息队列,如果消息队列挂了怎么办呢?是不是 降低了系统的可用性 ?
那这样是不是要保证HA(高可用)?是不是要搞集群?那么我 整个系统的复杂度是不是上升了 ?
万一我发送方发送失败了,然后执行重试,这样就可能产生重复的消息。
或者我消费端处理失败了,请求重发,这样也会产生重复的消息。
对于一些微服务来说,消费重复消息会带来更大的麻烦,比如增加积分,这个时候我加了多次是不是对其他用户不公平?
如果我们此时的消息需要保证严格的顺序性怎么办呢?比如生产者生产了一系列的有序消息(对一个id为1的记录进行删除增加修改),但是我们知道在发布订阅模型中,对于主题是无顺序的,那么这个时候就会导致对于消费者消费消息的时候没有按照生产者的发送顺序消费,比如这个时候我们消费的顺序为修改删除增加,如果该记录涉及到金额的话是不是会出大事情?
就拿我们上面所讲的分布式系统来说,用户购票完成之后是不是需要增加账户积分?在同一个系统中我们一般会使用事务来进行解决,如果用 Spring
的话我们在上面伪代码中加入 @Transactional
注解就好了。但是在不同系统中如何保证事务呢?总不能这个系统我扣钱成功了你那积分系统积分没加吧?或者说我这扣钱明明失败了,你那积分系统给我加了积分。
我们刚刚说了,消息队列可以进行削峰操作,那如果我的消费者如果消费很慢或者生产者生产消息很快,这样是不是会将消息堆积在消息队列中?
先了解下MQ,再来解决上述问题。
RocketMQ
是一个 队列模型 的消息中间件,具有高性能、高可靠、高实时、分布式 的特点。它是一个采用 Java
语言开发的分布式的消息系统,由阿里巴巴团队开发,在2016年底贡献给 Apache
,成为了 Apache
的一个顶级项目。 在阿里内部,RocketMQ
很好地服务了集团大大小小上千个应用,在每年的双十一当天,更有不可思议的万亿级消息通过 RocketMQ
流转。
在谈 RocketMQ
的技术架构之前,我们先来了解一下两个名词概念——队列模型 和 主题模型 。
首先我问一个问题,消息队列为什么要叫消息队列?
你可能觉得很弱智,这玩意不就是存放消息的队列嘛?不叫消息队列叫什么?
的确,早期的消息中间件是通过 队列 这一模型来实现的,可能是历史原因,我们都习惯把消息中间件成为消息队列。
但是,如今例如 RocketMQ
、Kafka
这些优秀的消息中间件不仅仅是通过一个 队列 来实现消息存储的。
就像我们理解队列一样,消息中间件的队列模型就真的只是一个队列。。。
在一开始我跟你提到了一个 “广播” 的概念,也就是说如果我们此时我们需要将一个消息发送给多个消费者(比如此时我需要将信息发送给短信系统和邮件系统),这个时候单个队列即不能满足需求了。
当然你可以让 Producer
生产消息放入多个队列中,然后每个队列去对应每一个消费者。问题是可以解决,创建多个队列并且复制多份消息是会很影响资源和性能的。而且,这样子就会导致生产者需要知道具体消费者个数然后去复制对应数量的消息队列,这就违背我们消息中间件的 解耦 这一原则。
那么有没有好的方法去解决这一个问题呢?有,那就是 主题模型 或者可以称为 发布订阅模型 。
在主题模型中,消息的生产者称为 发布者(Publisher) ,消息的消费者称为 订阅者(Subscriber) ,存放消息的容器称为 主题(Topic) 。
其中,发布者将消息发送到指定主题中,订阅者需要 提前订阅主题 才能接受特定主题的消息。
RockerMQ
中的消息模型就是按照 主题模型 所实现的。
我们可以看到在整个图中有 Producer Group
、Topic
、Consumer Group
三个角色,我来分别介绍一下他们。
Producer Group
生产者组: 代表某一类的生产者,比如我们有多个秒杀系统作为生产者,这多个合在一起就是一个 Producer Group
生产者组,它们一般生产相同的消息。Consumer Group
消费者组: 代表某一类的消费者,比如我们有多个短信系统作为消费者,这多个合在一起就是一个 Consumer Group
消费者组,它们一般消费相同的消息。Topic
主题: 代表一类消息,比如订单消息,物流消息等等。你可以看到图中生产者组中的生产者会向主题发送消息,而 主题中存在多个队列,生产者每次生产消息之后是指定主题中的某个队列发送消息的。
每个主题中都有多个队列(这里还不涉及到 Broker
),集群消费模式下,一个消费者集群多台机器共同消费一个 topic
的多个队列,一个队列只会被一个消费者消费。如果某个消费者挂掉,分组内其它消费者会接替挂掉的消费者继续消费。就像上图中 Consumer1
和 Consumer2
分别对应着两个队列,而 Consuer3
是没有队列对应的,所以一般来讲要控制 消费者组中的消费者个数和主题中队列个数相同 。
当然也可以消费者个数小于队列个数,只不过不太建议。如下图。
每个消费组在每个队列上维护一个消费位置 ,为什么呢?
因为我们刚刚画的仅仅是一个消费者组,我们知道在发布订阅模式中一般会涉及到多个消费者组,而每个消费者组在每个队列中的消费位置都是不同的。如果此时有多个消费者组,那么消息被一个消费者组消费完之后是不会删除的(因为其它消费者组也需要呀),它仅仅是为每个消费者组维护一个 消费位移(offset) ,每次消费者组消费完会返回一个成功的响应,然后队列再把维护的消费位移加一,这样就不会出现刚刚消费过的消息再一次被消费了。
为什么一个主题中需要维护多个队列 ?
答案是 提高并发能力 。的确,每个主题中只存在一个队列也是可行的。你想一下,如果每个主题中只存在一个队列,这个队列中也维护着每个消费者组的消费位置,这样也可以做到 发布订阅模式 。如下图。
但是,这样我生产者是不是只能向一个队列发送消息?又因为需要维护消费位置所以一个队列只能对应一个消费者组中的消费者,这样是不是其他的 Consumer
就没有用武之地了?从这两个角度来讲,并发度一下子就小了很多。
所以总结来说,RocketMQ
通过使用在一个 Topic
中配置多个队列并且每个队列维护每个消费者组的消费位置 实现了 主题模式/发布订阅模式 。
RocketMQ
技术架构中有四大角色 NameServer
、Broker
、Producer
、Consumer
。
主要负责消息的存储、投递和查询以及服务高可用保证。说白了就是消息队列服务器嘛,生产者生产消息到 Broker
,消费者从 Broker
拉取消息并消费。
这里,我还得普及一下关于 Broker
、Topic
和 队列的关系。上面我讲解了 Topic
和队列的关系——一个 Topic
中存在多个队列,那么这个 Topic
和队列存放在哪呢?
一个 Topic
分布在多个 Broker
上,一个 Broker
可以配置多个 Topic
,它们是多对多的关系。
如果某个 Topic
消息量很大,应该给它多配置几个队列(上文中提到了提高并发能力),并且 尽量多分布在不同 Broker
上,以减轻某个 Broker
的压力 。
Topic
消息量都比较均匀的情况下,如果某个 broker
上的队列越多,则该 broker
压力越大。
它其实是一个 注册中心 ,主要提供两个功能:Broker管理 和 路由信息管理 。说白了就是 Broker
会将自己的信息注册到 NameServer
中,此时 NameServer
就存放了很多 Broker
的信息(Broker的路由表),消费者和生产者就从 NameServer
中获取路由表然后照着路由表的信息和对应的 Broker
进行通信(生产者和消费者定期会向 NameServer
去查询相关的 Broker
的信息)。
消息发布的角色,支持分布式集群方式部署。说白了就是生产者。
消息消费的角色,支持分布式集群方式部署。支持以push推,pull拉两种模式对消息进行消费。同时也支持集群方式和广播方式的消费,它提供实时消息订阅机制。说白了就是消费者。
当然,RocketMQ
中的技术架构肯定不止前面那么简单,因为上面图中的四个角色都是需要做集群的。官方图片如下:
其实和我们最开始画的那张乞丐版的架构图也没什么区别,主要是一些细节上的差别。听我细细道来。
第一、我们的 Broker
做了集群并且还进行了主从部署 ,由于消息分布在各个 Broker
上,一旦某个 Broker
宕机,则该Broker
上的消息读写都会受到影响。所以 Rocketmq
提供了 master/slave
的结构, salve
定时从 master
同步数据(同步刷盘或者异步刷盘),如果 master
宕机,则 slave
提供消费服务,但是不能写入消息 。
第二、为了保证 HA
,我们的 NameServer
也做了集群部署,但是请注意它是 去中心化 的。也就意味着它没有主节点,你可以很明显地看出 NameServer
的所有节点是没有进行 Info Replicate
的,在 RocketMQ
中是通过 单个Broker和所有NameServer保持长连接 ,并且在每隔30秒 Broker
会向所有 Nameserver
发送心跳,心跳包含了自身的 Topic
配置信息,这个步骤就对应这上面的 Routing Info
。
第三、在生产者需要向 Broker
发送消息的时候,需要先从 NameServer
获取关于 Broker
的路由信息,然后通过 轮询 的方法去向每个队列中生产数据以达到 负载均衡 的效果。
第四、消费者通过 NameServer
获取所有 Broker
的路由信息后,向 Broker
发送 Pull
请求来获取消息数据。Consumer
可以以两种模式启动—— 广播(Broadcast)和集群(Cluster)。广播模式下,一条消息会发送给 同一个消费组中的所有消费者 ,集群模式下消息只会发送给一个消费者。
在上面的技术架构介绍中,我们已经知道了 RocketMQ
在主题上是无序的、它只有在队列层面才是保证有序 的。
顺序其实又分普通顺序和严格顺序。
Broker
重启情况下不会保证消息顺序性 (短暂时间) 。但是,严格顺序看起来虽好,实现它可会付出巨大的代价。如果你使用严格顺序模式,Broker
集群中只要有一台机器不可用,则整个集群都不可用。你还用啥?现在主要场景也就在 binlog
同步。
一般而言,我们的 MQ
都是能容忍短暂的乱序,所以推荐使用普通顺序模式。
那么,我们现在使用了 普通顺序模式 ,我们从上面学习知道了在 Producer
生产消息的时候会进行轮询(取决你的负载均衡策略)来向同一主题的不同消息队列发送消息。那么如果此时我有几个消息分别是同一个订单的创建、支付、发货,在轮询的策略下这 三个消息会被发送到不同队列 ,因为在不同的队列此时就无法使用 RocketMQ
带来的队列有序特性来保证消息有序性了。
幂等 。在编程中一个幂等 操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。比如说,这个时候我们有一个订单的处理积分的系统,每当来一个消息的时候它就负责为创建这个订单的用户的积分加上相应的数值。可是有一次,消息队列发送给订单系统 FrancisQ 的订单信息,其要求是给 FrancisQ 的积分加上 500。但是积分系统在收到 FrancisQ 的订单信息处理完成之后返回给消息队列处理成功的信息的时候出现了网络波动(当然还有很多种情况,比如Broker意外重启等等),这条回应没有发送成功。
那么,消息队列没收到积分系统的回应会不会尝试重发这个消息?问题就来了,我再发这个消息,万一它又给 FrancisQ 的账户加上 500 积分怎么办呢?
所以我们需要给我们的消费者实现 幂等 ,也就是对同一个消息的处理结果,执行多少次都不变。
那么如何给业务实现幂等呢?这个还是需要结合具体的业务的。你可以使用 写入 Redis
来保证,因为 Redis
的 key
和 value
就是天然支持幂等的。当然还有使用 数据库插入法 ,基于数据库的唯一键来保证重复数据不会被插入多条。
不过最主要的还是需要 根据特定场景使用特定的解决方案 ,你要知道你的消息消费是否是完全不可重复消费还是可以忍受重复消费的,然后再选择强校验和弱校验的方式。毕竟在 CS 领域还是很少有技术银弹的说法。
而在整个互联网领域,幂等不仅仅适用于消息队列的重复消费问题,这些实现幂等的方法,也同样适用于,在其他场景中来解决重复请求或者重复调用的问题 。比如将HTTP服务设计成幂等的,解决前端或者APP重复提交表单数据的问题 ,也可以将一个微服务设计成幂等的,解决 RPC
框架自动重试导致的 重复调用问题 。
要么都执行要么都不执行 。在同一个系统中我们可以轻松地实现事务,但是在分布式架构中,我们有很多服务是部署在不同系统之间的,而不同服务之间又需要进行调用。比如此时我下订单然后增加积分,如果保证不了分布式事务的话,就会出现A系统下了订单,但是B系统增加积分失败或者A系统没有下订单,B系统却增加了积分。前者对用户不友好,后者对运营商不利,这是我们都不愿意见到的。
那么,如何去解决这个问题呢?
如今比较常见的分布式事务实现有 2PC、TCC 和事务消息(half 半消息机制)。每一种实现都有其特定的使用场景,但是也有各自的问题,都不是完美的解决方案。
在 RocketMQ
中使用的是 事务消息加上事务反查机制 来解决分布式事务问题的。
在第一步发送的 half 消息 ,它的意思是 在事务提交之前,对于消费者来说,这个消息是不可见的 。
那么,如何做到写入消息但是对用户不可见呢?RocketMQ事务消息的做法是:如果消息是half消息,将备份原消息的主题与消息消费队列,然后 改变主题 为RMQ_SYS_TRANS_HALF_TOPIC。由于消费组未订阅该主题,故消费端无法消费half类型的消息,然后RocketMQ会开启一个定时任务,从Topic为RMQ_SYS_TRANS_HALF_TOPIC中拉取消息进行消费,根据生产者组获取一个服务提供者发送回查事务状态请求,根据事务状态来决定是提交或回滚消息。
你可以试想一下,如果没有从第5步开始的 事务反查机制 ,如果出现网路波动第4步没有发送成功,这样就会产生 MQ 不知道是不是需要给消费者消费的问题,他就像一个无头苍蝇一样。在 RocketMQ
中就是使用的上述的事务反查来解决的,而在 Kafka
中通常是直接抛出一个异常让用户来自行解决。
你还需要注意的是,在 MQ Server
指向系统B的操作已经和系统A不相关了,也就是说在消息队列中的分布式事务是——本地事务和存储消息到消息队列才是同一个事务。这样也就产生了事务的最终一致性,因为整个过程是异步的,每个系统只要保证它自己那一部分的事务就行了。
其实这个问题可以将它广义化,因为产生消息堆积的根源其实就只有两个——生产者生产太快或者消费者消费太慢。
我们可以从多个角度去思考解决这个问题,当流量到峰值的时候是因为生产者生产太快,我们可以使用一些 限流降级 的方法,当然你也可以增加多个消费者实例去水平扩展增加消费能力来匹配生产的激增。如果消费者消费过慢的话,我们可以先检查 是否是消费者出现了大量的消费错误 ,或者打印一下日志查看是否是哪一个线程卡死,出现了锁资源不释放等等的问题。
回溯消费是指
Consumer
已经消费成功的消息,由于业务上需求需要重新消费,在RocketMQ
中,Broker
在向Consumer
投递成功消息后,消息仍然需要保留 。并且重新消费一般是按照时间维度,例如由于Consumer
系统故障,恢复后需要重新消费1小时前的数据,那么Broker
要提供一种机制,可以按照时间维度来回退消费进度。RocketMQ
支持按照时间回溯消费,时间维度精确到毫秒。
需要等待一个刷盘成功的 ACK
,同步刷盘对 MQ
消息可靠性来说是一种不错的保障,但是 性能上会有较大影响 ,一般地适用于金融等特定业务场景。
开启一个线程去异步地执行刷盘操作。消息刷盘采用后台异步线程提交的方式进行, 降低了读写延迟 ,提高了 MQ
的性能和吞吐量,一般适用于如发验证码等对于消息保证要求不太高的业务场景。
一般地,异步刷盘只有在 Broker
意外宕机的时候会丢失部分数据,你可以设置 Broker
的参数 FlushDiskType
来调整你的刷盘策略(ASYNC_FLUSH 或者 SYNC_FLUSH)。
上面的同步刷盘和异步刷盘是在单个结点层面的,而同步复制和异步复制主要是指的 Borker
主从模式下,主节点返回消息给客户端的时候是否需要同步从节点。
然而,很多事情是没有完美的方案的,就比如我们进行消息写入的节点越多就更能保证消息的可靠性,但是随之的性能也会下降,所以需要程序员根据特定业务场景去选择适应的主从复制方案。
那么,异步复制会不会也像异步刷盘那样影响消息的可靠性呢?
答案是不会的,因为两者就是不同的概念,对于消息可靠性是通过不同的刷盘策略保证的,而像异步同步复制策略仅仅是影响到了 可用性 。为什么呢?其主要原因是 RocketMQ
是不支持自动主从切换的,当主节点挂掉之后,生产者就不能再给这个主节点生产消息了。
比如这个时候采用异步复制的方式,在主节点还未发送完需要同步的消息的时候主节点挂掉了,这个时候从节点就少了一部分消息。但是此时生产者无法再给主节点生产消息了,消费者可以自动切换到从节点进行消费(仅仅是消费),所以在主节点挂掉的时间只会产生主从结点短暂的消息不一致的情况,降低了可用性,而当主节点重启之后,从节点那部分未来得及复制的消息还会继续复制。
在单主从架构中,如果一个主节点挂掉了,那么也就意味着整个系统不能再生产了。那么这个可用性的问题能否解决呢?一个主从不行那就多个主从的呗。
但是这种复制方式同样也会带来一个问题,那就是无法保证 严格顺序 。在上文中我们提到了如何保证的消息顺序性是通过将一个语义的消息发送在同一个队列中,使用 Topic
下的队列来保证顺序性的。如果此时我们主节点A负责的是订单A的一系列语义消息,然后它挂了,这样其他节点是无法代替主节点A的,如果我们任意节点都可以存入任何消息,那就没有顺序性可言了。
而在 RocketMQ
中采用了 Dledger
解决这个问题。他要求在写入消息的时候,要求至少消息复制到半数以上的节点之后,才给客⼾端返回写⼊成功,并且它是⽀持通过选举来动态切换主节点的。
RocketMQ
消息存储架构中的三大角色——CommitLog
、ConsumeQueue
和 IndexFile
。
CommitLog
: 消息主体以及元数据的存储主体,存储 Producer
端写入的消息主体内容,消息内容不是定长的。单个文件大小默认1G ,文件名长度为20位,左边补零,剩余为起始偏移量,比如00000000000000000000代表了第一个文件,起始偏移量为0,文件大小为1G=1073741824;当第一个文件写满了,第二个文件为00000000001073741824,起始偏移量为1073741824,以此类推。消息主要是顺序写入日志文件,当文件满了,写入下一个文件。ConsumeQueue
: 消息消费队列,引入的目的主要是提高消息消费的性能(我们再前面也讲了),由于RocketMQ
是基于主题 Topic
的订阅模式,消息消费是针对主题进行的,如果要遍历 commitlog
文件中根据 Topic
检索消息是非常低效的。Consumer
即可根据 ConsumeQueue
来查找待消费的消息。其中,ConsumeQueue
(逻辑消费队列)作为消费消息的索引,保存了指定 Topic
下的队列消息在 CommitLog
中的起始物理偏移量 offset
**,消息大小 size
和消息 Tag
的 HashCode
值。consumequeue
文件可以看成是基于 topic
的 commitlog
索引文件**,故 consumequeue
文件夹的组织方式如下:topic/queue/file三层组织结构,具体存储路径为:$HOME/store/consumequeue/{topic}/{queueId}/{fileName}。同样 consumequeue
文件采取定长设计,每一个条目共20个字节,分别为8字节的 commitlog
物理偏移量、4字节的消息长度、8字节tag hashcode
,单个文件由30W个条目组成,可以像数组一样随机访问每一个条目,每个 ConsumeQueue
文件大小约5.72M;IndexFile
: IndexFile
(索引文件)提供了一种可以通过key或时间区间来查询消息的方法。总结来说,整个消息存储的结构,最主要的就是 CommitLoq
和 ConsumeQueue
。而 ConsumeQueue
你可以大概理解为 Topic
中的队列。
RocketMQ
采用的是 混合型的存储结构 ,即为 Broker
单个实例下所有的队列共用一个日志数据文件来存储消息。有意思的是在同样高并发的 Kafka
中会为每个 Topic
分配一个存储文件。这就有点类似于我们有一大堆书需要装上书架,RockeMQ
是不分书的种类直接成批的塞上去的,而 Kafka
是将书本放入指定的分类区域的。
而 RocketMQ
为什么要这么做呢?原因是 提高数据的写入效率 ,不分 Topic
意味着我们有更大的几率获取 成批 的消息进行数据写入,但也会带来一个麻烦就是读取消息的时候需要遍历整个大文件,这是非常耗时的。
所以,在 RocketMQ
中又使用了 ConsumeQueue
作为每个队列的索引文件来 提升读取消息的效率。我们可以直接根据队列的消息序号,计算出索引的全局位置(索引序号*索引固定⻓度20),然后直接读取这条索引,再根据索引中记录的消息的全局位置,找到消息。
在最上面的那一块就是我刚刚讲的你现在可以直接 **把 ConsumerQueue
理解为 Queue
**。
在图中最左边说明了 红色方块 代表被写入的消息,虚线方块代表等待被写入的。左边的生产者发送消息会指定 Topic
、QueueId
和具体消息内容,而在 Broker
中管你是哪门子消息,他直接 **全部顺序存储到了 CommitLog **。而根据生产者指定的 Topic
和 QueueId
将这条消息本身在 CommitLog
的偏移(offset),消息本身大小,和tag的hash值存入对应的 ConsumeQueue
索引文件中。而在每个队列中都保存了 ConsumeOffset
即每个消费者组的消费位置,而消费者拉取消息进行消费的时候只需要根据 ConsumeOffset
获取下一个未被消费的消息就行了。