目标检测概述

IOU
Intersection over Union 是一种测量在特定数据集中检测相应物体准确度的一个标准。
IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxex)的任务都可以用
IoU来进行测量。
为了可以使IoU用于测量任意大小形状的物体检测,我们需要:
1、 ground-truth bounding boxes(人为在训练集图像中标出要检测物体的大概范围);
2、我们的算法得出的结果范围。
也就是说,这个标准用于测量真实和预测之间的相关度,相关度越高,该值越高。
目标检测概述_第1张图片

 目标检测概述_第2张图片

 

TP TN FP FN
TP TN FP FN里面一共出现了4个字母,分别是T F P N。
T是True;
F是False;
P是Positive;
N是Negative。
T或者F代表的是该样本 是否被正确分类。
P或者N代表的是该样本 原本是正样本还是负样本。
TP(True Positives)意思就是被分为了正样本,而且分对了。
TN(True Negatives)意思就是被分为了负样本,而且分对了,
FP(False Positives)意思就是被分为了正样本,但是分错了(事实上这个样本是负样本)。
FN(False Negatives)意思就是被分为了负样本,但是分错了(事实上这个样本是正样本)。
在mAP计算的过程中主要用到了,TP、FP、FN这三个概念。
precision (精确度)和 recall (召回率)
TP是分类器认为是正样本而且确实是正样本的例子,FP是分类器认为是正样本但实际上不是正样本的例子,Precision翻译成中文就是“分类器认为是正类并且确实是正类的部分占所有分类器认为是正类的比例”。
                                

 

TP是分类器认为是正样本而且确实是正样本的例子,FN是分类器认为是负样本但实际上不是负样
本的例子,Recall翻译成中文就是“分类器认为是正类并且确实是正类的部分占所有确实是正类的比
例”。
                                

 

精度就是找得对,召回率就是找得全

你可能感兴趣的:(目标检测,计算机视觉,人工智能)