负二项分布

本文链接:个人站 | | CSDN
版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。

之前在介绍 DeepAR 等时间序列预测模型时,为了简单起见,我们使用了大家比较熟悉的正态分布作为示例。在实际应用中,需要根据数据本身的特点选择合适的分布。泊松分布、二项分布、以及负二项分布都可以用来刻画计数类数据。其中,泊松分布的 ,二项分布的 ,负二项分布的 。在我日常接触的业务场景中, 较为常见,为此免不了要跟负二项分布打交道。

虽然没什么必要,但是本着「有困难要上,没困难创造困难也要上」的精神,我们还是来推导一下负二项分布的相关公式。

1. 定义

一个成功概率为 的伯努利试验,不断重复,直至失败 次。此时成功的次数为一个随机变量,用 表示。称 服从负二项分布,记作 。

需要注意的是,负二项分布的定义并不唯一。例如 tensorflow_probability 使用的定义与本文一致,而 scipy 则将 定义为伯努利试验成功 次时的失败次数。使用前一定要先看清楚,别问我怎么知道的。此外,Wikipedia 词条不同段落使用的定义竟然也不完全一致,或许是由不同的人编辑的。

2. 概率质量函数

时总共进行了 次试验,最后一次为失败,故前 次试验总共成功了 次,失败了 次。因此

3. 期望

根据定义
\begin{aligned} \mathbb{E}X &=\sum\limits_{k=0}^{\infty}kf(k;r,p)\\ &=\sum\limits_{k=1}^{\infty}kf(k;r,p)\\ &=\sum\limits_{k=1}^{\infty}k\frac{(k+r-1)!}{k!(r-1)!}p^k(1-p)^r\\ &=\frac{rp}{1-p} \sum\limits_{k=1}^{\infty}\frac{[(k-1)+(r+1)-1]!}{(k-1)![(r+1)-1]!}p^{k-1}(1-p)^{r+1}\\ &=\frac{rp}{1-p} \sum\limits_{k=1}^{\infty}f(k-1;r+1,p) \end{aligned}
令 、,显然


4. 方差

首先计算

令 、,考虑服从负二项分布的随机变量 ,其概率质量函数为 ,显然
\begin{aligned} \sum\limits_{k=1}^{\infty}k f(k-1;r+1,p) &= \sum\limits_{k'=0}^{\infty}(k'+1)f(k';r',p)\\ &= \mathbb{E}(Y+1)\\ &= \mathbb{E}Y + 1\\ &= \frac{r'p}{1-p} + 1\\ &= \frac{(r+1)p}{1-p} + 1\\ &= \frac{rp+1}{1-p} \end{aligned}

而根据定义
\begin{aligned} \mathrm{Var}X &= \mathbb{E}(X-\mathbb{E}X)^2\\ &=\mathbb{E}[X^2-2X\mathbb{E}X + (\mathbb{E}X)^2]\\ &= \mathbb{E}X^2 - (\mathbb{E}X)^2\\ &= \frac{r^2p^2+rp}{(1-p)^2} - \frac{r^2p^2}{(1-p)^2}\\ &= \frac{rp}{(1-p)^2} \end{aligned}

我们在文章开头提到,负二项分布的 。由于 ,这个结论是显而易见的。

5. 累积分布函数

负二项分布的累积分布函数可以表示为正则不完全 Beta 函数:

证明如下:

令 ,有

对 求偏导,得
\begin{aligned} \frac{\partial F}{\partial q} & = \sum_{x=0}^k \tbinom{x+r-1}{x}\left[-x(1-q)^{x-1}q^r+r(1-q)^x q^{r-1}\right]\\ & = \sum_{x=0}^k \tbinom{x+r-1}{x}\left[-x(1-q)^{x-1}q^r+r(1-q)^x q^{r-1}\right]\\ & = \sum_{x=0}^k \tbinom{x+r-1}{x}\left[x[(1-q)-1](1-q)^{x-1}q^{r-1}+r(1-q)^x q^{r-1}\right]\\ & = \sum_{x=0}^k \tbinom{x+r-1}{x}\left[-x(1-q)^{x-1}q^{r-1}+(x+r)(1-q)^x q^{r-1}\right]\\ &= - \sum_{x=0}^kx \tbinom{x+r-1}{x}(1-q)^{x-1}q^{r-1}+\sum_{x=0}^k(x+r) \tbinom{x+r-1}{x}(1-q)^x q^{r-1}\\ &= - \sum_{x=1}^kx \tbinom{x+r-1}{x}(1-q)^{x-1}q^{r-1}+\sum_{x=0}^k(x+r) \tbinom{x+r-1}{x}(1-q)^x q^{r-1}\\ &= - \sum_{x=1}^k \frac{(x+r-1)!}{(x-1)!(r-1)!}(1-q)^{x-1}q^{r-1}+\sum_{x=0}^k \frac{(x+r)!}{x!(r-1)!}(1-q)^x q^{r-1}\\ &= - \frac{r}{q^2}\sum_{x=1}^k \frac{(x+r-1)!}{(x-1)! r!}(1-q)^{x-1}q^{r+1}+\frac{r}{q^2}\sum_{x=0}^k \frac{(x+r)!}{x! r!}(1-q)^x q^{r+1}\\ &= - \frac{r}{q^2}\sum_{x'=0}^{k-1} \frac{(x'+r)!}{x' ! r!}(1-q)^{x' }q^{r+1}+\frac{r}{q^2}\sum_{x=0}^k \frac{(x+r)!}{x! r!}(1-q)^x q^{r+1}\\ &= - \frac{r}{q^2} F(k-1;r+1,1-q) + \frac{r}{q^2} F(k;r+1,1-q)\\ &= \frac{r}{q^2} f(k; r+1, 1-q) \end{aligned}
而根据正则不完全 Beta 函数的定义,有

同样对 求偏导,得
\begin{aligned} \frac{\partial I_q}{\partial q} &= \frac{q^{r-1}(1-q)^k}{B(r, k+1)}\\ &= \frac{\Gamma(r+k+1)}{\Gamma(r)\Gamma(k+1)} q^{r-1}(1-q)^k\\ &= \frac{(r+k)!}{(r-1)! k!}q^{r-1}(1-q)^k\\ &= \frac{r}{q^2}\frac{(r+k)!}{r! k!}q^{r+1}(1-q)^k\\ &= \frac{r}{q^2} f(k; r+1,1-q) \end{aligned}
也就是说

亦即

注意到 时有

解得常数 。

证毕。

6. 在时间序列预测模型中的使用

DeepAR 等模型中,网络的输出目标是概率分布的参数。例如正态分布的 和 。但对于负二项分布而言,让网络直接输出 和 是不合适的,因为在训练过程中很难保证输出的值满足 。那么让网络输出 和 呢?似乎是可以的,只要保证 , 即可。前者可以使用 softplus 激活函数,后者可以使用 sigmoid 激活函数。有没有办法避免使用 sigmoid 呢?通常的做法是让网络输出 和 ,只要使用 softplus 激活函数确保二者均为正数即可。

参考文献

  1. Negative binomial distribution - Wikipedia
  2. Beta function - Wikipedia
  3. Patil G P. On the evaluation of the negative binomial distribution with examples[J]. Technometrics, 1960, 2(4): 501-505.

你可能感兴趣的:(负二项分布)