import os
import sys
import torch
import numpy as np
from feat.model import ResNet # 导入自己的模型类
def load_checkpoint(checkpoint_file, model):
"""Loads the checkpoint from the given file."""
err_str = "Checkpoint '{}' not found"
assert os.path.exists(checkpoint_file), err_str.format(checkpoint_file)
checkpoint = torch.load(checkpoint_file, map_location="cpu")
return checkpoint["epoch"]
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES']='0' # 设置运行显卡号
model_filename='resnet_epoch_17.pyth'
# init model
model = ResNet()
load_checkpoint(model_filename, model)
model = model.cuda()
model.eval()
onnx_name = 'resnet.onnx' # 输出onnx文件
example = torch.randn((1,3,224,224)) # 模型输入大小
example = example.cuda()
input_names = ["input"]
output_names = ["outputs"]
dynamic_axes = {"input": {0: "batch_size"}, "outputs": {0: "batch_size"}}
# 模型转换并保存
torch.onnx.export(model, example,onnx_name, opset_version=12, input_names=input_names, output_names=output_names, dynamic_axes=None)
import os
import sys
import torch
import numpy as np
import onnxruntime
import time
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES']='0' # 设置运行显卡号
model_filename='resnet_epoch_17.pyth'
# init model
model = ResNet()
load_checkpoint(model_filename, model)
model = model.cuda()
model.eval()
session = onnxruntime.InferenceSession(onnx_name,providers=['CUDAExecutionProvider'])
img = np.random.randn(1,3,224,224).astype(np.float32) # 随机输出
t1 = time.time()
onnx_preds = session.run(None, {"input": img})
print("onnx preds result: ", onnx_preds)
t2 = time.time()
pth_preds = model(torch.from_numpy(img).cuda())
print("pth preds result: ", pth_preds)
t3 = time.time()
对比打印结果,确认结果保持一致
onnx preds res: [array([[-0.13128008, 0.04037811, 0.0529038 , 0.101323 , -0.03352938, [43/1903]
0.03099938, 0.06380229, -0.03544223, -0.03368076, 0.06361518,
-0.00668521, -0.01996843, -0.0132075 , -0.03448019, 0.17793381,
0.08131739, 0.10232763, -0.09122676, 0.01173838, 0.03181053,
-0.05899123, 0.01569226, -0.04734752, -0.12551421, 0.00686131,
-0.00749457, -0.03729884, 0.05349742, 0.0304895 , 0.02956274,
0.00393172, 0.00196273, 0.01296113, -0.03985897, -0.06289426,
-0.0825834 , -0.28903952, 0.02842386, -0.1718263 , -0.05555207,
-0.03707219, 0.10904352, 0.06582819, 0.04960179, 0.01508415,
0.05469472, 0.28663486, 0.1183752 , -0.06070469, -0.05200525,
-0.03477468, -0.06193898, -0.04432139, 0.0843045 , -0.12080704,
0.00163073, -0.08544722, 0.11994477, 0.02619292, 0.05066012,
-0.00332941, -0.1488586 , 0.07936171, 0.06203181, -0.0645356 ,
-0.07661135, -0.05883927, -0.00459472, -0.06721105, -0.02880175,
-0.00337263, -0.00927516, 0.03289868, 0.10054352, -0.09545278,
-0.0216963 , 0.11413048, -0.04580398, 0.02614305, -0.08269466,
0.01835637, 0.17654261, 0.0573773 , -0.06440263, 0.01176349,
0.00998674, 0.02840159, 0.14086637, -0.02473863, 0.05228964,
-0.03329878, -0.02751228, -0.04788758, 0.1546051 , 0.05838795,
-0.02351469, -0.01315547, -0.13732813, -0.08146078, 0.01943143,
-0.08991284, 0.14222968, -0.14729632, 0.24547395, -0.05293949,
0.04446511, 0.05436133, -0.09403729, -0.0900671 , 0.04516568,
0.10035874, -0.03281724, 0.19480802, -0.11344203, -0.02487336,
-0.08126407, -0.00491623, 0.04313428, -0.10474856, -0.11427435,
-0.01765379, -0.04613522, 0.08338863, 0.00564523, 0.14067101,
0.05428562, 0.12530491, -0.2503076 ]], dtype=float32)]
pth preds res: tensor([[-0.1313, 0.0404, 0.0529, 0.1013, -0.0335, 0.0310, 0.0638, -0.0354,
-0.0337, 0.0636, -0.0067, -0.0200, -0.0132, -0.0345, 0.1779, 0.0813,
0.1023, -0.0912, 0.0117, 0.0318, -0.0590, 0.0157, -0.0473, -0.1255,
0.0069, -0.0075, -0.0373, 0.0535, 0.0305, 0.0296, 0.0039, 0.0020,
0.0130, -0.0399, -0.0629, -0.0826, -0.2890, 0.0284, -0.1718, -0.0556,
-0.0371, 0.1090, 0.0658, 0.0496, 0.0151, 0.0547, 0.2866, 0.1184,
-0.0607, -0.0520, -0.0348, -0.0619, -0.0443, 0.0843, -0.1208, 0.0016,
-0.0854, 0.1199, 0.0262, 0.0507, -0.0033, -0.1489, 0.0794, 0.0620,
-0.0645, -0.0766, -0.0588, -0.0046, -0.0672, -0.0288, -0.0034, -0.0093,
0.0329, 0.1005, -0.0955, -0.0217, 0.1141, -0.0458, 0.0261, -0.0827,
0.0184, 0.1765, 0.0574, -0.0644, 0.0118, 0.0100, 0.0284, 0.1409,
-0.0247, 0.0523, -0.0333, -0.0275, -0.0479, 0.1546, 0.0584, -0.0235,
-0.0132, -0.1373, -0.0815, 0.0194, -0.0899, 0.1422, -0.1473, 0.2455,
-0.0529, 0.0445, 0.0544, -0.0940, -0.0901, 0.0452, 0.1004, -0.0328,
0.1948, -0.1134, -0.0249, -0.0813, -0.0049, 0.0431, -0.1047, -0.1143,
-0.0177, -0.0461, 0.0834, 0.0056, 0.1407, 0.0543, 0.1253, -0.2503]],
device='cuda:0', grad_fn=)
onnx cost time: 0.0062367916107177734 pth cost time: 0.030622243881225586
import os
import tensorrt as trt
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
trt_runtime = trt.Runtime(TRT_LOGGER)
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
def get_engine(input_shape, onnx_file_path = "", engine_file_path=""):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser, builder.create_builder_config() as config:
# builder.max_workspace_size = 1 << 32 # 256MiBs
config.max_workspace_size = 1 << 33 # 1024MB
# config.set_flag(trt.BuilderFlag.FP16) # 使用Fp16精度,如果使用FP32需要屏蔽这一句。
builder.max_batch_size = 1
# Parse model file
if not os.path.exists(onnx_file_path):
print('ONNX file {} not found, please run torch2onnx first to generate it.'.format(onnx_file_path))
exit(0)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
if not parser.parse(model.read()):
print ('ERROR: Failed to parse the ONNX file.')
for error in range(parser.num_errors):
print (parser.get_error(error))
return None
# The actual yolov3.onnx is generated with batch size 64. Reshape input to batch size 1
network.get_input(0).shape = input_shape
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
# config = trt.IBuilderConfig(max_workspace_size = 1 << 32)
# config.
engine = builder.build_engine(network, config)
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine
if os.path.exists(engine_file_path):
# If a serialized engine exists, use it instead of building an engine.
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
return build_engine()
if __name__ == '__main__':
onnx_file = 'resnet.onnx'
engin_file = 'resnet.engine'
input_shape = [1, 3, 224, 224]
get_engine(input_shape, onnx_file, engin_file)
import os
import sys
import cv2
import copy
import torch
import numpy as np
import time
import onnxruntime
import pycuda.driver as cuda
import tensorrt as trt
os.environ['CUDA_VISIBLE_DEVICES']='3'
TRT_LOGGER = trt.Logger()
import trt_common
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
if sys.getdefaultencoding() != 'utf-8':
reload(sys)
sys.setdefaultencoding('utf-8')
# Simple helper data class that's a little nicer to use than a 2-tuple.
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
def get_engine(engine_file_path):
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
# This function is generalized for multiple inputs/outputs for full dimension networks.
# inputs and outputs are expected to be lists of HostDeviceMem objects.
def do_inference_v2(context, bindings, inputs, outputs, stream):
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# Run inference.
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.
return [out.host for out in outputs]
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES']='3'
onnx_name = 'resnet.onnx'
trt_name = 'resnet.engine'
session = onnxruntime.InferenceSession(onnx_name,providers=['CUDAExecutionProvider'])
import pycuda.autoprimaryctx
engine = get_engine(trt_name)
context = engine.create_execution_context()
inputs, outputs, bindings, stream = allocate_buffers(engine)
img = cv2.imread('test.jpg')
img = cv2.resize(img, (224,224))
img = img.transpose([2,0,1]).astype(np.float32)
img = np.expand_dims(img, axis=0)
t1 = time.time()
onnx_preds = session.run(None, {"input": img})
#print("onnx_preds: ", onnx_preds)
t2 = time.time()
inputs[0].host = np.ascontiguousarray(img)
trt_outputs = do_inference_v2(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
data = copy.deepcopy(trt_outputs[0])
#print("preds: ", data)
t3 = time.time()
print("onnx: ", t2-t1, " trt: ", t3-t2)
error1
ERROR: Failed to parse the ONNX file.
In node 84 (importConv): UNSUPPORTED_NODE: Assertion failed: inputs.at(2).is_weights() && "The bias tensor is required to be an initializer for the Conv operator."
solution:
pip install onnx-simplifier
通过simplify重新保存ONNX模型
import onnx
from onnxsim import simplify
onnx_model = onnx.load('resnet.onnx')
model_simp, check = simplify(onnx_model)
onnx.save(model_simp, 'resnet_sim.onnx')
error2
ValueError: ndarray is not contiguous
solution:
数组不连续,使用np.ascontiguousarray(img) 处理数组
inputs[0].host = np.ascontiguousarray(img)
error3
Error Code 1: Myelin (Compiled against cuBLASLt 11.11.3.0 but running against cuBLASLt 11.4.1.0.)
solution:
tensorrt 和 torch同时使用调用了不同版本的libmyelin.so,不同同时使用。tensorrt和onnxruntime同时使用也会发生。