C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。
在面向过程的设计中,我们可能会定义一系列函数来执行上述每个步骤。每个函数可能会接受一些参数(如衣物列表、洗衣粉数量等)并返回一些结果(如洗涤完成时间、烘干后的干衣服列表等)。数据(如衣物和洗衣粉)可能会在这些函数之间传递,而函数之间的关系是松散的,通过参数和返回值来传递数据。
C++是基于面向对象的,关注的是对象,将一件事情拆分成不同的对象靠对象之间的交互完成。
在用洗衣机洗衣服时一共有四个对象:人,洗衣机,洗衣粉,衣服。
整个洗衣服的过程: 人将衣服放进洗衣机,倒入洗衣粉,,启动洗衣机,洗衣机就会完成洗衣过程并且甩干。
整个过程主要是:人,洗衣机,洗衣粉,衣服四个对象之间交互完成的,人不需要关心洗衣机具体是如何洗衣服的,是如何甩干的。
1. 在面向过程的洗衣服过程中,我们将整个过程拆分为一系列的函数,数据在函数之间传递。
2. 而在面向对象的洗衣服过程中,我们将整个过程看作洗衣机对象和衣物对象之间的交互,每个对象封装了自己的数据和方法,通过方法调用来实现交互。两种方式在解决问题和组织代码时有不同的优势和适用场景。
C语言结构体中只能定义变量,在C++中,结构体内不仅可以定义变量,也可以定义函数。
比如:之前在数据结构初阶中,用C语言方式实现的栈,结构体中只能定义变量;现在以C++方式实现,会发现struct中也可以定义函数:
struct Stack
{
void Init(size_t capacity)
{
_array = (DataType*)malloc(sizeof(DataType) * capacity);
if (nullptr == _array)
{
perror("malloc申请空间失败");
return;
}
_capacity = capacity;
_size = 0;
}
void Push(const DataType& data)
{
// 扩容
_array[_size] = data;
++_size;
}
DataType Top()
{
return _array[_size - 1];
}
void Destroy()
{
if (_array)
{
free(_array);
_array = nullptr;
_capacity = 0;
_size = 0;
}
}
DataType* _array;
size_t _capacity;
size_t _size;
};
int main()
{
Stack s;
s.Init(10);
s.Push(1);
s.Push(2);
s.Push(3);
cout << s.Top() << endl;
s.Destroy();
return 0;
}
上面结构体的定义,在C++中更喜欢用class来代替。
class className
{
// 类体:由成员函数和成员变量组成
}; // 一定要注意后面的分号
class为定义类的关键字,ClassName为类的名字,{ }中为类的主体,注意类定义结束时后面分号不能省略。
类体中内容称为类的成员:类中的变量称为类的属性或成员变量; 类中的函数称为类的方法或者成员函数。
类的两种定义方式:
注意:一般情况下,在实际工作中更多的是采用第二种方式,更便于管理
成员变量命名规则的建议:
我们看看这个函数,是不是很僵硬?
class Date
{
public:
void Init(int year)
{
// 这里的year到底是成员变量,还是函数形参?
year = year;
}
所以一般都建议这样:
class Date
{
public:
void Init(int year)
{
_year = year;
}
private:
int _year;
};
或者这样:
class Date
{
public:
void Init(int year)
{
mYear = year;
}
private:
int mYear;
};
其他方式也可以的,主要看公司要求。一般都是加个前缀或者后缀标识区分就行。
C++实现封装的方式:用类将对象的属性与方法结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用。
【访问限定符说明】
1. public修饰的成员在类外可以直接被访问
2. protected和private修饰的成员在类外不能直接被访问(此处protected和private是类似的)
3. 访问权限作用域从该访问限定符出现的位置开始直到下一个访问限定符出现时为止
4. 如果后面没有访问限定符,作用域就到 } 即类结束。
5. class的默认访问权限为private,struct为public(因为struct要兼容C)
注意:访问限定符只在编译时有用,当数据映射到内存后,没有任何访问限定符上的区别
示例:
class Date
{
public:
//显示日期信息
void Print()
{
cout << _year << '/' << _month << '/' << _day << endl;
}
private:
int _year=2023;//年
int _month=12;//月
int _day=31;//日
};
int main()
{
Date d1;
d1.Print();
d1._year;//该代码会报错
return 0;
}
当我们用d1访问Print函数时能够正常访问:
而当我们尝试去访问Date类中的私有成员时,编译器就会报错:
【面试题】
问题:C++中struct和class的区别是什么?
解答:C++需要兼容C语言,所以C++中struct可以当成结构体使用。另外C++中struct还可以用来定义类。和class定义类是一样的,区别是struct定义的类默认访问权限是public,class定义的类默认访问权限是private。
【面试题】
面向对象的三大特性:封装、继承、多态。
在类和对象阶段,主要是研究类的封装特性,那什么是封装呢?
封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互。
封装本质上是一种管理,让用户更方便使用类。
比如:对于电脑这样一个复杂的设备,提供给用户的就只有开关机键、通过键盘输入,显示器,USB插孔等,让用户和计算机进行交互,完成日常事务。但实际上电脑真正工作的却是CPU、显卡、内存等一些硬件元件。
对于计算机使用者而言,不用关心内部核心部件,比如主板上线路是如何布局的,CPU内部是如
何设计的等,用户只需要知道,怎么开机、怎么通过键盘和鼠标与计算机进行交互即可。
因此计算机厂商在出厂时,在外部套上壳子,将内部实现细节隐藏起来,仅仅对外提供开关机、鼠标以及键盘插孔等,让用户可以与计算机进行交互即可。
在C++语言中实现封装,可以通过类将数据以及操作数据的方法进行有机结合,通过访问权限来隐藏对象内部实现细节,控制哪些方法可以在类外部直接被使用。
类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员时,需要使用 :: 作用域操作符指明成员属于哪个类域
用类类型创建对象的过程,称为类的实例化
做个比方。类实例化出对象就像现实中使用建筑设计图建造出房子,类就像是设计图。只设
计出需要什么东西,但是并没有实体的建筑存在,同样类也只是一个设计,实例化出的对象
才能实际存储数据,占用物理空间。
class A
{
public:
void PrintA()
{
cout << _a << endl;
}
private:
char _a;
};
问题:如何计算一个类的大小?
可以用sizeof操作符来计算类的大小,如下:
class A
{
public:
void PrintA()
{
cout << _a << endl;
}
private:
char _a;
};
int main()
{
cout << sizeof(A) << endl;
return 0;
}
类只保存成员变量,成员函数存放在公共的代码段
示例:
// 类中既有成员变量,又有成员函数
class A1 {
public:
void f1() {}
private:
int _a;
};
// 类中仅有成员函数
class A2 {
public:
void f2() {}
};
// 类中什么都没有---空类
class A3
{};
int main()
{
cout << "A1:" << sizeof(A1) << endl;
cout << "A2:" << sizeof(A2) << endl;
cout << "A3:" << sizeof(A3) << endl;
return 0;
}
结论:一个类的大小,实际就是该类中”成员变量”之和,当然要注意内存对齐注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象。
- 第一个成员在与结构体偏移量为0的地址处。
- 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
注意:对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。VS中默认的对齐数为8- 结构体总大小为:最大对齐数(所有变量类型最大者与默认对齐参数取最小)的整数倍。
- 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整
体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
我们先来定义一个日期类 Date:
class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout << _year << "-" << _month << "-" << _day << endl;
}
private:
int _year; // 年
int _month; // 月
int _day; // 日
};
int main()
{
Date d1, d2;
d1.Init(2022, 1, 11);
d2.Init(2022, 1, 12);
d1.Print();
d2.Print();
return 0;
}
int main()
{
return 0;
}
对于上述类,有这样的一个问题:
Date类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当d1调用 Init 函数时,该函数是如何知道应该设置d1对象,而不是设置d2对象呢?
C++中通过引入this指针解决该问题,即:
C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。
1. this指针的类型:类类型* const,即成员函数中,不能给this指针赋值,但是this指针指向的值可以被改变。
2. 不能在形参和实参显示写,只能在“成员函数”的内部使用。
3. this指针本质上是“成员函数”的形参,当对象调用成员函数时,函数将对象地址作为实参传递给this形参(this指针指向当前对象)。所以对象中不存储this指针。
4. this指针是“成员函数”第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传递,不需要用户传递。
class A
{
public:
void Print()
{
cout << "Print()" << endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->Print();
return 0;
}
那么可能有老铁会问了:空指针不是不能解引用吗?
实际上这里根本没有解引用,Print函数是存放在公共代码区的,它的地址是在编译阶段就已经处理好了的,和普通的函数调用一样,在调用时是通过函数名调用规则直接call函数的地址就行了,p是一个空指针,相当于把空指针传给了this,但由于this指针并没有访问具体对象成员,所以正常运行。
class A
{
public:
void PrintA()
{
cout << _a << endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->PrintA();
return 0;
}
答案:B
this指针接收实参后就是空指针了,this指针已经被置空了,不指向当前对象的地址了,但还要去访问当前类的对象_a,就要对空指针进行解引用,此时就会崩溃。我们也可通过调试观察到。
3.this指针存在哪里?
this指针是个形参,形参是在函数的栈桢里,在函数的栈桢里面的变量是属于栈中的。
有时编译器会使用寄存器对其进行优化,this指针会存在寄存器中。
(本章完)